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PREFACE

THE object of this book is to give a more systematic account of the

elements of the theory of Fourier integrals than has hitherto been

given. I have, however, not attempted to deal with a number of

important topies of recent growth: Wiener’s Tauberian theorems:

applications to almost periodic functions, quasi-analytic functions,

and integral functions; Stieltjes integrals; harmonic analysis in

general; and Bochner’s generalized integrals, and the theory for_
functions of several variables, of which an account is given ‘in

Bochner’s book. ' : D)

The reader requires only a general knowledge of ana.lysi‘s,;fhough
he will presumably be familiar with the elements of the~theory of
Fourier series. The book may be read as a sequel to my Theory of
Functions. "‘\

A great variety of applications of Fourier integrl are to be found
in the literature, often in the form of ‘operators”, and often in the
works of authors who are evidently not spe¢ia y interested in analy-
sis. As exercises in the theory I have Wiitten out a few of these
applications as it seemed to me thafien analyst should. I have
retained, as having a certain pictiresqueness, some references to
‘heat’, ‘radiation’, and so forth bt the interest is purely analytical,
and the reader need not knowwhether such things exist.

o) E.CT.

+L)
NEW COLLEGE, OXFORD, %\ -
H8937.
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I
CONVERGENCE AND SUMMABILITY

1.1. Fourier’'s formulae. Tag origin of the theory of Fourier
integrals is to be found in Fourjer’s Analytical Theory of Heat }
Fourier’s argument, which would not now he called a proof, is sub-
stantially as follows. Suppose that a function Sz}, of period 2m), is
represented by the Fourier series

Flx) == dag+ (Gﬂ COS@ b -sinix_)_
1] TZI )l + o) )l ’.\:\.

The coefficients a,,, b, are obtained formally by multipljing by
cos(mzfA) or sin(maz/A), and integrating term-by-term ovep@— A, wA).
This gives A D °

N

A p*{)
1 mi 1 N
= 2 f fteos™2dt, b, w L f 1O
— A —3‘1‘1\“’
and the formula may be written \\\
l wA = l 11')- ~”} ( t)
N mr—
= . — JANSU dl.
10 =5 [ 10w + 3o ,Lf( Joos 2
~Td TN

Putting #/A = u, 1/A = 5u, 3{1@; making A — o, the sum passes
formally into an integral, and welobtain

i) —%\‘f}u f flticos u(z—t) dt. (1.1.1)
N

This is Fourier's intagritl formula.
It may also be:ﬁrﬁtten in the form (analogous to that of the
Fourier series) L ©
A%"}'{x) = f {a(u)cos wu + blulsin xu} du, (1.1.2)
o F

Where \ :' ] 1 L]
O o) = i f fjeosudt,  blu) = f fOsinut di. (1.1.3)
If f(¢) is an even function, then

a.-(fla,) = 7% ff(ﬂ)cos ul i,
1]

. T See list of books and monographs, pp. 370-1.
1362 B



2 CONVERGENCE AND SUMMABILITY Chap, 1

while #(u} vanishes; and the formula becomes
flxy = %—J cos 2w g f f(t)ycos ut dt, {1.1.4}
w
[ ]

This is Fourier’s coéa'ne formula. Similarly, if f(2}is odd, a(%) vanishes,
and we obtain Fourier's sine formula,

flz) =2 J' sinau d@;f F(e)sin ut dt. (1.L5)
- D 'n\
We can also regard (1.1.1) as merely a combination Df (l 1.4} and
(1.1.8); for write

J&) = Hf@) Hf—a @) —f—)}) = S{WH-M&)
80 that g{x} is even and %(z) is odd. Then \ 0

f f(t)cos u{x—1) dt N\
= 2 cos ux fg(t)cqs ut\d; .—}~ 2 sinuw jsk(t)sin ut di,
and (1.1.1) gives Ov‘;.’;l : ’
o) Hh). &

o fral

=2 f COS XU d{u‘f g{tycosul di +2 J. sinzu du f h(t)sin ut dt,
T k3
9 N
i.e. the cosine, formma for g(z) added to the sine formula for A(z).
The aboveormulae were discovered independently by Cauchyt in
his resea,(éhes on the propagation of waves. The formal basis given

by Ca‘\ngh‘y i3 as follows. The right-hand side of (1.1.1) is, forma,lly,'
the hmlt as § > 0 of .
A=

“\™ - 3
N/ ;J. e5% d, f fltleos u{z—2) dt = % jf(t) dat j-e-ﬁ“ cos u(x—i) du

4] —m —t D

177 8
_— Bl
7 .[f( )32‘[—(37—5)2
The factor multiplying f{£} tends to 0 except when ¢ — z. We should
. T Cauchy (1), (2); see list of original memaoirs, pp. 371-87.



11,1.2 CONVERGENCE AND SUMMABILITY a

therefore expect the value of the integral to be unaltered if we replace
J(€) by f(z); and this wonld give

@) s _
= e,

again verifying (1.1.1).
Another equivalent formula, given by Cauchy, is

J) = -2%-?_ J. e~z gy J.f(t)e““’ dt. (LX)
- — .\:\
Putting flz) = g{x)--h(x), where ¢ is even and j odd, as before,”

| f ftet ds — 2 f githcosut d -+ 2¢ f A(t)sin w81y, §
—% o b 4%

~\
and the right-hand side of (L.1.8) is \/

o oe)

2 f cos xu du f g coa ut dt +g f sin U i;j"k(t)sin ul dt
73 0 i p\ )
& = 0@+hE) = fa).
We shall call (1.1.6) the exponep?ié.l’form of Fourier’s formula.
A formula of a slightly different\type is obtained by expressing the
outer integral in (1.1.1) as the Limit of an integral over (0,]), and
inverting the order of inte;g&@tion. The result is
Koo
Fyse Tim 1 f 70 ?E:ﬁt__‘} dt. (1.1.7)
A\ ¥ @

v A T

The same resultj)sztm:y be obtained in the same way from (1.1.6). This
formula is k\%@n as Fourier's single-integral Jormala,
A :

S 12, Fp}]rier transforms. It was pointed out by Cauchy that
~ thegeformulae lead to reciprocal relations between pairs of functions,

)i w
If we Avrite ch(u}: J(%) OJ' () cosut dt, (1.2.1)
fen (114 Sy = ’/G) fl‘l(u)cos:m du, (1.2.2)

and the relation between f(z) and F(x) is reciprocal. Such functions



4 CONVERGENCE AND SUMMABILITY Chap. I

were called by Cauchy reciprbcal functions of the first kind, We shall
call functions 3o related Fourier cosine transforms of each other. Thus

- J 2y 1
! w) 142

are a pair of Fourier cosine transforms,
Similarly, from Fourier's sine formula, we obtain

~ O T s 2
ﬁ;@ ~ N/(w) of fsinu a, '»\(1 2.3)

fla) = J(g) f Rpinoude. Oy (124
m 7'\
b O
These were called by Cauchy reciprocal funetjcni‘s’sof the second
kind. We shall call them Fourier sine tmns&éniﬁg of esch other.
Thus e-2, ,\/ (%) I_—EJEE are Fouricr gine transfbrﬁ]s.
kip \
o~ \/
The formula (1.1.6) leads similarly tc@ﬁe unsymmetrical formulae

. 1 :"’3 .

Flu) = ;‘/(—2;)‘:.[0 Fltretn dt, (1.2.5)
&7 . o

f(iv)_? :/E?;)_J; Flu)e~izu gy, {1.2.8) |

We shall call such {iﬁcﬁions simply Foupier transforms of each other,
Thus \

) 2 1
= gl = -
s oo

are Fouﬁgsf}rﬁqsfonns of each other. _
Iff(q,i\is.Even, Fz) = Fa): if fz) is odd, F(x) = {F(x).

1& Generalized Fourjer integrals. The existence of the in.
Aegial defining #(u) implies & certain restriction on f(x) at infinity.
ven if F{u) doos not exist, the functions

: ) 1 o . .
F+ = Tif 3.
(w) 7B nf f(t)g dt, {1.3.1)

L]
1
F = . _ wf
{w) ﬂ/(%}:!; f(t).e‘. dt, (1.3.2)
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where w = w4, may exist, the former for sufficiently large positive
¥, the latter for sufficiently large negative ». For

= . 1_ . 1.3.3
R = 75 of JOe-verd dt, (1.3.3)

so that F,(w) is the transform of the function equal to f(t)e~* for
t >0, and to 0 for £ <C 0. The formula reciprocal to {1.8.8) is

17 . f@es (x> 0) )
[ He-iry —_
V) f Prlutivle=du { 0 (z < 0), Q
- Oy
1 o firy >0 O
[ e t2(u i) — . N
T Jen L R < 9N
There is 3 similar formula involving F_. Adding, wefm.\é:y write
g+ b+
x F {w)e— =@ duw F w)e i dap,
(1.3.4)
where @ is & sufficiently large positive: number, b a sufficiently large
‘negative number. nN

For example, if f(x) = ¢, theﬁ:;
1 4 11
PPN, ~h 2 _=
JZm G’ Ftw) V&) 14w
In this case {1.8.4) ig"at once verified by the calculus of residues.

In this form Fdurier's integral formula may be applied to a
periodic functima;~~ht f(x) have the period 2#. Then for v > 0

Fi(w) = —

w BmELT

) = {z)fffx)wfiz—m)z f el dy

L ] l“\
%
\3

2nw

- 165 Z f feye s i = f 1O 1

_ 1 dw)
‘J(zﬁ.) 1— e2m‘w

where $(w) = j fieyee d.
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. 1
Slmﬂaﬂy, F_.(W) == ""‘“‘;R‘é;;i li(aﬂ;:u—o ('i.’ < 0).

The reciprocal formula is therefore

oo b0
fiz) :.% f ¢(w), e~ dap -—-ﬁ}« f fﬂﬁ"l_ o~iTi0 dop.

1 — glwiw Sar — gimiw
-

Here ¢(w) is an integral function, If it behaves at infinity so that
we can evaluate the right-hand side by the calculus of residues in
the obvious way, we obtain ~

@) =5 > e, S

Re= -0

We have thus returned to the Fourier series for flx). ¢ N\

1.4. The formulae of Laplace. The formula
$(s) = j Flese dan~ (1.4.1)
/ w0

i3 known as Laplace’s integral. If f(#) s the given function, (s} is
in general analytic for R(s) >> 0. The reciprocal formula is

i &N
= { fw) {e>0) (L4.2)

1 N
%j el 0 (x<0)

E—iwm }
From a formal poini\éf “View the formulae are a particular case of
those of §1.2, aw'ig Sgen on pufting & = o4-ét.
As o still morelspecial case we obtain a reciprocity between two
analytic funetions. Let
7\

N f) = 3 a,an,

ﬁ:?@%uﬁpose that the integral (1.4.1) can be evaluated by term-by-
Qﬁ‘?ﬂ integration. Then ' _

' = H nle
ChlE) == @, L - - Yn
‘ﬁ( ) nZ'o ® {»!‘e wn di Z gn+l’

a=0
1,{1 © i
or -95(~) = 3 nla, .
} LY} n=0

it f@) i8 suitably, restricted, ¢(s) will be an analytic function
regular in the neighbouthood of & = w; and, if € is a closed curve
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surrounding the origin, but lying sufficiently far from it,

J‘ et dw = 5 z nla, n+1

= a2 = fz). (1.4.3)
" wn=0

The function f(z) may therefore be represented as a #rigonometrical
integral, but now along a closed curve.

1.5. The formulae of Mellin., Still another pair of formula:e}

embodying the same formal idea is given by ., \
O
F(8) = f fleyw1 de, & sy
01 e+t "\\
=)= %CL &s)x— ds\\ (1.5.2)

The idea of such a reciprocity ocoifg) in Riemann’s famous
memoirt on prime numbers. It was formul&ted explicitly by Cahen,}
and the first accurate discussion wasl glven by Mellin.| We shall call
the formulae Mellin’s inversion f(?}*mulae

These formulae arise naturall}‘"ih the theory of Dirichlet series in

the following way. The partisular case
Q

o \'\‘ 1 ¢4 {im
Pl = e ddn oo o [ Tt @0
T
0 P \¥; e—~iw

is well known,\*lﬁfi;v let () be a function expressible as a Dirichlet

geries A\"4
bl <& \

= $ls) =
O n=1
Théﬁ;wb have formally
—_— — L pE—1 —_ %=1
$(s) zm) j et da = o f ()5 d,
where 1@ = 3 aye;
=10

t Riemann (1), 1 Cahen (1), | Mellin (13, (2).
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and reciprocally
etia0 e4-io
.._}f..__ f ¢(3}F{3)x—3 ds — f Dis¥nxy-s ds
2
¢—in

= 3 a0 = fi.

The forms (1.5.1), (1.5.2) are cbtained by putting ¢(s)I(s) = F(s).

Mellin’s formulae may also be obtained by a substitution from the
exponential form of Fourier's formula. In fact, putting = == et aa{d
# = ¢-Fif, (1.5.1) becomes \

‘R’ll

] 2\ N
Flet+in) = [ flefyeter dg, O
and (1.5.2) becomes o ~‘
1) = 5 j Slo-titje-ferin G
o\
The functions J@metf(el), S(C—I—‘?&)

are thus Fourier transforms of each cher.
Suppose that, in Mellin’s formulag,the function f{x) is analytic at
the origin and in a region contaamng the positive real axis. Consider

the integral if(z)(*z)"”l iz,

where I' is a loop céx&ng from infinity on the positive real axis,
encircling the origith in the positive direction, and returning to
infinity. We defitie’{ —z)*-1 as eft—lozt-2) where log(—z) is real on the
negative real aﬁns

Supp P compresscd into the real axis on both sides. The part
of the integral above the real axis gives
At

a\ Y% > . %
\ — Jf{x)g(s-l}(lugz—-m) di — e-:sn’ff{x)ma——l dx,
0 LU

and that below the real axis gives
f f{x]g(&-—l)ﬂﬂ".}:+lr}dx e it J‘ Fay-1 da.

Hence j Je) -~z)3"1 dz = — 72 sin s F(s).
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Let wx(8) = F(s)sinax.
Then we obtain the reciprocal formulae
1
M) = — g [ Je—ap-rds (L5.3)
T
1 c+im ) i,
1) =5 f ’éfi—f,; ds. (1.5.4)

A simple example is f(z) = e%, x{s) = 1/I'(1—s5). Such formuine
have important applications in the theory of functions of a comple£, ®
variable,f but we cannot consider them further here. O\

1.6. For the early history of the Fourier-Canchy formulae wé may
refer to the article by Burkhardt in the Encyklopddie. ™\

The theorems of this chapter are in the main analogeu§’to classical
theorems in the theory of Fourier series. We do not@etually assume
& knowledge of the theory of Fourier series, though the reader will
presumably be familiar with it. Almost all thedrems on Fourier series
have some sort of analogue for integrals. Ifgbme cases the theorems
are so similar that the extension from geries to integrals is hardly
worth making. In other cases the::ejiife new points of interest in
the integral cese, which is even sometimes the simpler.

1.7. Notation., We use

AN

\'\i”’fﬂx) dx

to denote the Iﬁbeggué"integral of f(x) over (0,00) in the strict sense,
implying that ths{integral is absolutely convergent, i.e. that

O @
N [ 1) de
“ :.' 0
also exists. If f(z) is integrable over (0, X) for every X, and
\ ) | X
lim da
lim j f)

exists, we denote the limit by
[ fia) do.
]

+ Carlson (1}.
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Buch an inﬁegral is known as a Cauchy integral. A similar notation
is used in the case of other limits, Thus

ff(w) da
=+

] 1
denotes the limit of f fl@) da
&

48 6 - 0 through positive values, _
In “formal’ analysis we, use [ f) dz to denote that the il\ltegra.l

: o :
exists in some sense op other, There is generally little righ ?}f\confusion
between this and the Lebesgue sense. Oy
We say that Jlx) belongs to, or is, L¥(a, b) if S(@}is measurable and
b 4

fr@Ppds < o O

We write Z for 1. | AN

X ’\l‘
B Li.m, x)
y dm off(:wffx)dx

(limit in mean} we denote a funeion $(x) such that

b o3
g fles e
a, b, and # having p:gege}ibed values,
As complex variables we nge
=T, we gty g otit, [ = ¢y,
Iff(x) is & given function, we denoge by
Y Fle), ), Ffz), ¥,(w), F_(w), &ls),
the funelions defined iy, (1.2.5), (1.2}, (1.2.3), (1.3.1), (1.3.2), (L5.1)
respg?'tively. In each cage it is assumed that, the integral referred
0! §m§sts I some senge op other. The anmbiguity of the expression
N& Fourier transform’, arising from the asymmetry of the formulae
(1.2.5), (1.2.6), is avoided by standardizing the use of small and
capital letters ag in these formulge,
Simﬂar]y with othep letiters 9.6,6,,¢, etc.), :
e denote by 4 an absolute constant, no hecessarily the same

one at faach occurrence; X ig used in a gimilgy way for a constant
depending on the data of the Problem in hang.

B
da == @,
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We say that the convergence of a sequence f,(x) to a limit f(z) is
bounded if |f,(x)] <X K for all # and x; and that it is dominated if
Ifu(®)| < ¢(x), where &(x) is L over a prescribed set. It is knownt

that :
Hm [ f,(e) dz = [ f(z) dx
if ‘the convergence is bounded or dominated.

1.8. Fundamental theorems. The theorem of Riemann-Lebesgue
is fundamental in the theory of Fourier integrals, as it is in the
theory of Fourier series. We shall state it as follows.

Tasorem 1. Let f(x) belong to L(—c0,0). Then the integrals

o o X 4 \...
j f(x)cos?txdx, f flz)sin Xe da, . '(.i‘.S.l )

£G4
S

Q"

tend to zero as A—> .
Consider the cosine integral. Let ¢ be a given posR\ve number,
Then we can choose X so large that O
9 N

7 -& ¢* &
fl@ide <e | if@)de< e
X - N

Henge

ff(x)cos)w dx] < g l,hjrxf(m)cos).x de| < e

for all values of A ~
Next, we can define a funct;on ${z), absolutely continuous in the
interval (— X, X)), such t‘{é@

. f (@)~ ) de < <.

Then ' f {f(x)—(x)}cos xx d:c. <e
for a]l values of A, Fmally
jg ¢(x)cos Ax dx
X
$(A)sinAX q!:(—uX)mn?tX 1 frrad
— HAR ) f & (wsin ke dr,

-X
and (for a fixed X) we can choose A, so large that the modulus of his

+ Titchmarsh, Theory of Functions, §§10.5, 10.8.
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is less than e for A > A,. Then

ff(x)cos)«xdx < 4e (A > A).

This proves the theorem for the cosine integral; a similar proof
applies to the sine integral.

THEOREM 2. Let f(z) belong to L{—o0,c0). Then a NECEISATY and
sufficient condition that

fdu ff(t)cos uwx—~t)dt =a '\(1.8.2)
L\

i that, for any ﬁxed S :'\.

Jim f Jaty+fw—y)— 2a}”“"-”d —0. (183
Since f(#)cos ulr—1)| < if{t)r the mte%"al :
f f(t)cosu{x%)‘d&

converges uniformly with respet;t i;o % over any finite interval.
Hence - +

f du f f(t)cosu(x——t) dt = f fle) dt f cosu(r—1) du
m\
‘ \\ J.f(t) snn)«(x——t)dt

Since f(z (%t) is integrable over (—o0,2—8) and (2§, o), it
follows frem’the Riemann-Lebesgue theorem that, for a fixed §,

“8
hm f f(z)mxifff_tl” d=0, lm f ) Sm"(‘*’*" dt =0,
\”;izga css b

&
sin A{x—i i
[ 2=t g [ Vetn)+1e—gy Y a4y,
and z-_as :
lim 2a§~-ll]-Aifdy= lim2afsin—vdv—- 2a f SE_?J,@ =

p d Yy A—rwm0

These equatlons together show that (1.3, 2) and (1.8.3) are equivalent.
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1.9. We are now in a position to extend all the ordinary conver-
gence tests for Fourier series to Fourier integrals. We shall, however,
content ourselves with proving the two following theorems, corre-
sponding to the tests of Jordan and Dini respectively,

TaeorEM 3. Let f() belong fo L{—oo,00). If f(t) i3 of bounded
variation in an interval including the poz’nt x, then
Hiet0+/e—0) = - [ du f fticosu(z—1) dt.  (1.9.1)
1]
If fit) is continuous and of bounded variation in an interval (a, b},
then (\)

——ci

NS ©
SJley =~ f du ff(t)cos u(x—i) di, R M1.9.2)
B ~‘ D

the integral converging uniformly in any interval mterwt‘to (,0).

Let $(y) = fla+y)+fe—y)—f@+0)—fE=0).
Then y(y) is of bounded variation over (0,3)/ 365 is small enough,
and $(y) > 0 as y > 0. We may therefore w}te

) = dly) )

where i (y) and () are positive DORS decreasmg bounded functions
in {0,8), which tend to 0 as y — U

(iven any positive number ‘e there is 8 number x such that
i (y) < e for y <L q. Let \

f d(y) 2N S‘“"y ay A\f b (y)“i‘”i’E dy + f 1) ?3‘-‘3‘-3’

By the second l:c\a,n value theorem, the first pa.rt is equal to
X

O A sin ¥
o sindy . v
m\) f p dy = (1) f — (0 << £< ),

£
an{tﬁe Iast integral is bounded for all A and {. Hence

f )™ dyl < e

for all values of A. I-Iamng fixed =, ¢1(y)/y is integrable over (x,8),
go that
sin Ay
dy =10
7 Y

3
Pm AL
%
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Since ¢ is arbitrary, it follows that

p e

a 3
lim f (o) 51_1:7)«3,5 dy = 0.
¢

Similarly, the integral involving 4,(y) tends to 0. This proves the
firs$ clanse of the theorem. :
If f{z} is continuous in {a, b), Hf(x40)+flz—0)} = flx); and, the
function being uniformly continuous in any interval interior to
(2,0), the conditions used in the proof hold uniformly, andiso the

convergence is uniform, -

TeEOREM 4. Let (&) belong to L{—cw0,0). Then, ) fgr‘a\ given x,
(1.9.2) is true if s « M

3 V
exisls for some positive 3; in particulor it ]LQZ'ds if fx) is differentiable
@t the point x, \\

This follows at once from Theorgfas 1 and 2, with g — f). If
f) is differentiable, the integrandin (1.9.8) is bounded, so that
the condition is plainly satisﬁgq;’: ;

TrEOR®M 5.1 Let f(t)/(1-43)) belong to I{—c0,c0); let

‘¢

@Z’T (1.9.3)

[ty Hfe—y)— @)
y .

ey = - f F) 22 g, (1.9.4)
&\ 7 y
-8 \\ o —1 =)
1 N 1 €03
b =k ____l'y —_ Cosxy d
1) _ :"l-f Ty)-— v dy w(_f + if)f(y) v 2
0 i (1.9.5)

O .
be abggi@{dy continuous over any finite interval 0 <KL <A, and
l(ft 'c:a‘{fbj, b{x) be their respective derivatives. et S(&) satisfy the condi-
Bxars of Theorem 3 or Theorem 4 in the neighbourhood of ¢ — . Then
' Hfz+0) +f{z—0)} = f {a(u)cos @ +b(u)sinxu} du,
=0
Suppose.first that Jf(z) = 0 for {z{ > 1. Then
& 1 1
1 .
[ [ feosyay - 1 [0 4y e g,
] -1 iy} )

T Hahn {3,
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1
8o that alx) = i f Jy)cosxy dy
1
almost everywhere. Similarly,
1
i .
b(x} =~ f f(y)sinzy dy
4

almost everywhere. The result then follows from Theorem 3 or
Theorem 4.
Suppose next that f(x) = 0 for l#| << 1. Then f(z)/x belongs 46,
L(—co,0). Hence, by Theorem 3 or 4, O\
—o N\ "
S 0)-Hf(w—0) = f {—by(u)oos u-+ ay(ujsin 2 2o,
0 A\ 3
NOW —o0 —e00 4 '\"
ginau]™ 1 ")
f by{u)eos xu du == [bl(u) T] - bla)sin zu du
n 0 ._.?,\\,:
) “'\ ".
= -_é f blu)sin 2e'die,
-+ \ o

«)

since b,(u) > 0 as 4 — 0. &N
Also N
00 —

. A (Ebé;cu N | ,
f @ (u)sin xu duy = [—{,:Qu) ~ L —[—; f a(w)coszu du

0 e
N
=% f a(u)cos vy du,
2\ 4,
since a,(u) tends 3070 as - 0 or 4 -» oo, The result in this case

thus follows. \ ("

The genggsﬁ‘result now follows by adding functions of the two
clagses conaidered.

I.LQ?‘:Monotonic functions.} The next theorem is based on the
fact that, even if r f(2) df does not exist, the integrals
]

hfm flticos ut dt, -:':w S(tysin ut dt

exist for » > 0 provided that J{t) > 0 steadily as {—o0. Here it
1 Pringsheim (1).
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seems slightly more convenient to take the cosine and sine integrals
separately.

THROREM 6. Let J(&) be non- -SHCTEaSINg over (0, ), tntegrable oper

any finite interval beginning at 0, and lof Jt) >0 as t > co. Then for
any positive x

o0

Hfw+-0)+-fla—o)) = 2 f cos 2w dus f Ft)cosut ds,
™
=
QN
We h&ve, by the second mean. value theorem,

f Jt)cosut dt| =

2 :\'
]f(T+o) [ oosutdt! HTHY:

Hence the t-integral converges uniformly . with ~1;‘espéct to % over
0 <A< %< u Hence -

o

— "
f 008 2% du f Sflt)eosut df — f J@) dt\;[’,n}rsm cos ut du

A i

—

_1 Sin pufz— —t) sin A(;cr— i) sin u{w--2) sin n A(z4- £)
2 f(t){ T—i fy-t -+ Cxdi z4-3 } a.
Now O

|—-)-IXJ

f f(t)s‘“”f’ 4 d@l}i\; [f(T+0) f gl dtf < Af(T+0),
A\

and similarly for, the integrals involving A and *-H. We can therefore
" choose T g0 Ia,rge that

\\"\ / f f(z){én“"‘“" }dz!<e

=]

=«

f\or ? > Tie), for all values of A and . Havmg fixed 7' > g,

i f FOREED 4y e 0) 000

by the analys:s of Theorem 3, and

ff(t) sunp(x—f—t) Snpletd) .,

p,-wo
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by the Riemann-Lebesgue theorem. Also

LT T
A
] f(:)silfx_(_%ﬁdtf < Aff{t}dt—:-()
F: ' h
as A->0; and similarly for the remaining part.
TaeorEM 7. If f{t) satisfies the condjtions of Theorem 8, then for
any positive —o

Hf@+0)+f(r—0) zg J' sinou du f ft)sinut dt.
Asu—0 0 0 )
—w | P . N\
" i{f{t)sinutdt] — !f(1+0)lfsinutdz! O

7"\
cosu — cosu®| _ 2f(1%0Y
— 5 :ﬁ_‘!"“‘.—-"s

= f(1+0)

¥ L
and ff(t)sin ut df = O(1), O
8

Hence the wu-integral is absolutely converge\n;ﬁ,\\aﬁt the lower limit,
Apart from this, the proof is the same as that of Theorem 6.
Fourier’s formulae may be establishedl under still more general
conditions by adding a function of th&bype of Theorem 3 to one of
the type of Theorem 6. The results ‘of this process are sufficiently
abvious, \\

1.11, Functions contain{ﬁg a periodic factor.t

TrEorEM 8. Lt f(%b: glticosat (a > 0), where g{t) iz non-
Increasing, tntegrable over (0,1), and g{t) >0 as t>w. Then for
any positive v N\

~

MY ; — — —0
%’{.f{x-l-O)f}-{(}—O)} = E( f + J. )cosxu du f Jteosut dt,
%“' . o — ¢
The inmgi' integral is

'\
Q g{t)cosat cosut dt,
< /
Wwhich is uniformly convergent over any finite interval not including
or ending at » = a. We may therefore invert the integral

a—48 —w

f cosau du f g{t)cos af cos ut dt
b D

+ Pringsheim (1},
4362 C
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for every § > 0. To prove that
- -0 P g
f coszu du f g{f)cos at cogut df — f f
0 1] o 1]

1t is therefore sufficient to prove that

I ticosat dt eOs T cos ul du — 0,
;33!9() a[ﬁ

This is clearly true for the Part 0 < £ < 7, with any finite 7', Tt ig .

therefore sufficient to prove that O
’ 3 N ¢
¢\
CO8 Tu cos ut du = 0, N\
5 D

N

Em t)coaaf dt
1 ; fg() J
or

oo
7 %4

T it a{@—1) —sin(a—8)(z—
2_{1; J git)eos at {_'—__'_m—:j_'__'.ﬁ\{—

Pttt

K3
Clearly, if 7' ~ x, w\
f g{t)eos at {su'xm;(xwri)Hs{i;;’i(’é"—B)(zv—z!)}(;?_i3 + %) dt — 0,
P N\ -

since this integral converges’iuﬁformly with respect to 8. Similarly
for the integral involv:i{ng\x—[—t. Hence it is sufficient to congider
——on \‘“’
t L \ .
| 20 i ) —sina— sy
74 </ : .

——sina(x——t)+sin(a——3)(m~—t}} di

>
7\ .
1 t .
.3\\ =2 f gi}ﬁ%ﬁ{cosaxsmat-cos{a-S)xsin(a—S}z} dt,
'3 T

B3 ‘~ _ t
Nopr ™
M\; e © —
2 f 2 cosarsin(a—s)t s — f ) in(20— 8 —sin 81} di,
T qr ¢
which converges uniformly with respect to 3 as § - 0, since

m, Ly
£ . i
gg—-)sm 8t = O{Q’(ED J. §Et'-§—t d‘} = O{g(Ty)):
7,

7
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— I
Hence f 7t cos atsin(a—3§)¢ df — f g(e) cos aif sin af dt,
7 t T ‘
and the result follows.
A similar argument applies to the mtegral over (z--8,A), It
therefore follows that .

—a A -
(J. +J; )cos:m du ! f(E)cos ut dt

= % wa(g){sin ?t(x—t}+sin ‘)‘(‘U-H)} dt_\\\.'“\
D w

22—t P
Finally
i . T'—x . }l .
f cos atw{x—*—” dt = f cos a(x—i—y)m dy Al
x—i Y 0
T G 2\
T’_z . I"‘_:x - - A
— cosar J‘ eosaysm?tydy_ s sin gy sin ydy
¥ & ¥
Tz N Tz
is bounded for fixed @ and @, 7' > 2, ) =y2a. Hence, by the second

mean-value theorem, ™

f g(t)cosatsm_;g;‘iﬁ dt = Ofg(T)},
; "

and the proof concludes a,s"lh Theorem 6.

THEOREM 9. Let f(t’)&é‘:t}(t)sin at {a > 0), where g(t) satisfies the
same conditions as inf Pheorem 8. Then for any positive 2

a—3 —m -0

%{f(x+0)+f"(\§”\:0\}}‘z§£ﬁ(! _E_a:[a)cosxu dy, oj J(tycos ut dt.

o)
AN .
1f, in addition, f E.(:_} de exists, then
00\. $

\\%\{f(x‘i‘ 0)-+flx—0) = ;(T—i— -j.w)cos xu du hj.mf(t)eos ut di.

Proceeding as in Theorem 8, we find that, in the first repeated
integral, the integral over 0 < < A (A > @) may be inverted if

J‘ g(t)stin at{cos(GJFa)x sin(a-+-8)t— cos(a— 38}z sin(a—8)¢} df — 0
1!
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a8 8-> 0, ie,
—00

CO8 @2 cos Sz J‘ g—g—)sinateosatsimﬁt at —
~—8in gz gin $z f g—g)sinzantcos 3t dt — 0,
- 2‘
The first integral -» 0 by uniform convergence. In the second,

f g—rl(:—)cos%tcosatdt S
: T & O
is uniformly convergent, and so tends to a finite limit;(and

—i

18 £ N
f ?g’)eogsm: o( f%ﬁ)Jro{agG) 1‘Liz’osaﬁ: d,tJ
' ' # Y

It
= Oflog 1/8)+ 0{2{}/8)} = Oflog1/8),
and sindxlog 1/8 —» 0, Thig proves thqsﬁ.ﬂst part,
In the second part of the theoren:l.iim‘ have to consider

] g ™

J‘ g(tisin ot

: {cos ax sin a;;’—:—"cos(a— d)zsin(a—8)} dt;

This proves ‘th‘é.\se cond part,

‘There is. 450 & similar Pair of theorems in which sines and cosines
are int?,@finged.

IJ;@lf.’OREM 0.7 Let f(t) — FOR(E), where g(t) is ultimately steadily
dedrensing to zero, G141t} belongs “to L(—00,), and Aty is
“meriodic (witf’z, period @) and integrable oper a period. Let f(t) be of

w | ~H2d Y/ —c0
%{f(x—{-OH—f{x-—-OJ} = Zé f du f J(@)cosu(z—1) dt,
—2nmje —F—— o

t Habn ()
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If g(¢) is steadily decreasing,
n+1a

(n41)

2] !g(-'»)ﬁ (8]

ledc J' TP a
ﬂ'c‘(':'a+1)a

< g(na) g(na} g(t)
< g f[k(t)]dt<K+ <k [ I

na (n—1)a

Hence f(£)/(1+ 1)) belongs to L{ —0o0,00). Hence, as in Theorem 5,
g{f(xq—())-{—f{x-i—o)} =1 f {~bu{u)eos vu-t-ay(ujsinzu} du, _

where @, (%), b;(u) are defined by (1.9.4), (1.9.5). U
80 il n G ,,'(”:‘:
X f haetr de = 5 Df h{x)efea+aw do \

i £
o EN—giniay etmay__ ptlnilay i Q‘z)e‘xy dx

_eitw
which ig bounded in any interval not com;ammg one of the points

y=0, :}:_ :i:*— . Hence the m‘Eégrals

os
f k(x)c Y da
3:{ t
are bounded, for all z, a.ﬁd\zz, In any such interval of values of y.
It then follows from the second mean-value theorem that the
integrals N\

\\ % f g(x)h(x)cf)sxy dx
’§ e
are um.formly convergent in any such interval, to a{y), b(y), say;
(), 1@) are the integrals of a{y), b{y) in the interior of such an
mt-eb(a] and
(2Zn+ 2wla
by (u)cosxu du

2anfa
—=(2n+2)mfa

- f b(u)sinzu du,

m] (2n4-2)mia

sin
= [61(“) -
and similarly for a{u).

2nmla e
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Also a, and b, are continuous, so that, on summation, all the inte-
grated terms cancel, and the result follows.

1.12. Oscillating functions. ¥n the above theorems our con-
ditions on f(x) are mostly restrictions on its oscillations. We shall next -
obtain a case of Fourier’s theorem which depends on the oscillations
of j' () being sufficiently rapid, prowded they are of a regular kind.

TueoREM 117 Let f(i} = ¢(t)cos:/;(t) or it)sing(l), where $(2) is
ntegrable over any finste interval, continuous and of bounded varigtion
in any interval not containing the origin, and ultimately mondtonic.
Let (t) be twice differentiable, (1} and ' (£)/$(2) ultzmately wcrmsmg
steadily o infinity, and

\.

- $(6) = o ftVp (). Nz
Then _ - \ \
f(w)=§f°f’smd ff(t)“"s (1.12.2)
h \

o @) §7(t) is non-decreasing, ' (t+1) _nQ{q; (& $-+1) = O{p(t)},
or (ii) Y7(t) is decreasing, 44" (t) > K, §(28) = O{(#)}.
We use the following lemma. ',j"..

LeMmas. If ¢(t)/h’(t) 18 momtanw and g(t) steadily decrea,smg, then

f‘#{t)g{t) 0O'@’h(t) dt = O{Q(G)max Ifﬁg}

Using the second\mean-value theorem repeatedly, we have, if
(1) /k’(t) mcreases

f ¢(t)g(Qcosh (&) dt = ;S,((t))g(t}h (Boos () ds

\ \ : = zi% f g (teosh{ty dt (@ < « < b)
_se F
= 75 f (toosh(t) dt (« < B < b)
¢

= ) s () —sin A},

and similarly for the other cages, Hence the result.
T Suggested by Landau, Vorlesungen iiber Zahlentheorie, Satz 413.
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The inner integral in (1.12.2} is convergent if
o
i} 4 ¢ i} dt = 0. 1.12.
plim i B(t)cosfib(t)+ut) (112.3)

) 4 W)
Wlku O F ke
and the first factor tends steadily to 0, while the second factor is
LU
B AGEd
and the last term is steadily decreasing in absolute value. Héndes
(1.12.3) follows from the lemma; and the convergence is Rlamly
uniform over any finite range of values of «. Hence O
A "
J. coszu du f fiticosut dt = J‘ fitydt f €08 xu'cqs‘g wt .
o b ¢ 0 » Qg
As in previous cases, it is now sufficient to prove that
N

lim f 10 sm". (@ df,\;*

A

Row

Ne/

for a sufficiently large 7'. ™
Take Case (i), and suppose thatq’; 3) is non-decreasing for t = 7,

and consider, e.g.
th—3

Jtﬁ cos{gb’t}i)g(?vs-—t}dt J+f + j f

Yo o tmd  foiB
O\ = S+ Syt Ay,
where ' (t,) z.,,\\iil\\TE)w () {A—’ (1)} is steadily increasing for ¢ < t;
hence, by the&[emma,, .
O ol st Bt | . 0
= ol sl - ol oo
$(ty—9) _dt) | pf it
N = O{io{'ﬁ “(t) =y {50—3)}} Olto&ﬁ"(%—fs)} {3034!”{50)}
(1.12.4)

provided that § = O(1). Fort =1,
$t) _ B[y, A
FO—A e,b*(t){ +¢‘u)+>\}

is decreasing, and J; also satisfies (1.12.4).
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Lastly, Jy= 0{ f J¢ t)‘dt] Sﬁf’(tu)}

0

Taking § = {#"{ty)} %, the required result follows from (1.22.1). The
corresponding mtegral with —A instead of A is simpler, there being
now no need to introduce ;. The result therefore follows in this cage.
If 4(¢) is decreasing, we obtain instead of (1.12.4)
$(T)
: O‘to&zf’(to)] ’
and the result follows with § = 1.

The argument in Case (ii) is sub:-,tantially the samq ﬁxamplea
are ¢(f) = e, Yll) = o; J(t) = 1, () = tlogt, \

1.13. The constant in Fourier’s formula"., The eonstant T
enters into Fourier’s formula, according to ou\r proof, through the
formula -

\
9 8

If we take the value of this mtegral as our fundamental constant

and denote it by ¢, I‘ouner 8 cosme formula, for example, is

[ v}

Sz} = . f 'CO8 LU du, [ cosud f(1) dt.
]
The values of o ‘&r fa,mlhar integrals are then obtained in terms
of C; for exa,mple yvtaking f(t} = e, and = = 0, we obtain

N

O 17 ? i
"\xi\l f %f cosute dt = J‘l-f——‘uﬁ
\J H b
N\ 3 du |
, Shat
BY f iat =
Ta]ﬂng fl&) = 2t (z > 0), we obtain (by Theorem 6)
Vld:n é f cos zu du f {—30?;51!

&

1 cos_m cosy . cosy
C’ 4 du f O'v’;r(f 7 )
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—r
COos
so that —-‘;—;‘ydy = v’C
vy

Many other such examples may be derived from the formulae
of Chapter VIL

Later, §1.27, we shall give another proof of a case of Fourier's
formula, in which the constant # comes from the theorem of residues:

1.14. Fourier’s single-integral formula. This is the formula
(1.L.7). Conditions for its validity are suggested by several of the
foregoing theorems; but it holds still more generally, since now 1t 13
not necessary for the Fourier transform of f(x) to exist. Q)

Tauorem 12.1 The formula O

Hfe0)+f(w—0)} = lim 2 f Foy e 4
holds if )
i(a) f@)/(1+|z]) belongs to L(—c0,00),
or i(b} flx)/x 35 of bounded variation in ( q:h and {—w0, —a} for
some positive &, and tends fo 0 at za}mty,

or ile) = ff(t} dt is of bounded mﬂatwn n {2,c0} and lends to 0

at mﬁmty, and a mmzlar oowdztwfn holds in (—w, —a);

and  (ii) in an nterval mcl\udmg z, f(t) i2 of bounded variation, or
satisfies one “the other conditions for the validity of

Fourier's series or inlegral.
After the analysis, 6f §1.9 it is sufficient to prove that we can choose

T so large that N
J’f(t)sm)t(x f) dt‘

N\ &
'\\‘.
for aH«‘zaIUes of A > A, Wlth a similar condition for (—eo, — 7'). This
is Llﬁﬂy true if i(a) holds. It follows from the second mean-value
theorem as in § 1.10 if i {(b) holds.
To prove that i(c) is sufficient, let

sy =3 [ foa

1 Prasad (1), Pringsheim (1), Hobson {1},

2 &
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Then f&) = ap'(2)+-d(x),
and ¢'(x) satisfes i (a), while ¢(x) satisfies i (b). Hence the result,
Condition i (c) includes i (a); for

#@ =122 [ a
1

The first term: belongs to L(1,c0) if i{a) holds; and so does the
second, since

N

B2 ]

1 \
£
<J
i N

¢ a ¢ ¢
dx . 1 1,
| 5 [ ona= ~¢Jvola+ [ Loy g
i _ i i o\ N
[flw) de < K g
as £ »co, Hence ¢'(z) belongs to L(1,c0), and }ience i(e) holds., On
the other hand, i{c) does not include JQ;Q\

1.18. Summability of integrai$y”' We say that the integral
f f(x) dor is summable (C,a), whetg'n > 0, to the sum I, if
il RS

AL ON
lim | {1—-%\" _
1 ﬂmf (1 ,\) fw)de — 1.
N

The case « = 0 is drdinary convergence. In the case o = 1 we have

»\,;glf‘;f “(1 ‘“f)f (#) de = 3 f dx f 1) dy,

a form anilogous to the sum

\~ S+t 48,
’"\\; N/ n
in the definition of (C, 1) summability of a series. The whole process
13 analogous to the C-summation of series, which is too well known
to need much discussion here, The main points are {i) the process is
more general than ordinary convergence; for example,

A
}imfsinamdw (@ > Q)



1.15 CONVERGENCE AND SUMMABILITY 27

does not exist, but

XA
tim | {1—%)sinas de = Lim{1. 5004 _ 1;
A—ra A Ao \D %A a

and (ii) that it is consistent with ordinary convergence, in the sense
that, if an integral i convergent, it is summable {C, ) to the same
value for every o >> 0. This is a particular case of the following

theorem.
If an integral is summable (C, o), where o 3> 0, it is summable (C, B>

where B > «, to the same value. L\’
A NS
X x % N/
Lot SO @) = f (1_1) () da. ~\
o A
Then if 8 > a, .mz\\' .

f (1_2)3_“’1)(%(,\,0{} A = f (1—3)ﬂ'“' 2 @f(lﬂ) () do
I

e

\\‘..

M
rge) 1 Wt
$e, B) = P@ a}r(a+1)p«+1j (1 'u) XA, o) dA

ie.

Hence \ - Lk A
& +) B, @) I} AN
B - a)r(a+1)w=+‘f (=) " rBR-D

If\ﬁ(}l oc)~—> I, suppose that (A, a)— 1] < M for all A, and < e
for A == A. Then

M
< JTEEY e [ A hen
MBI < g a>F<a+1)! 1f (= i

a A p-a-1
+ X J.(l———) }mﬂ}.
"'Laﬂo i
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The first term ig Lelitiseif A — 0), and the second g O(u~2-1) fo
a fixed A. It follows by choosing first A and then g that b, 8) > I
the required resuls,

1.16. Summability of Fourier integrals, We have formally
! _

; f (1-;_‘) du fm Fltoosulz—1) ds
(1] -0
25 ff(z) dtf(l—;’)cosu(x—-t) oz
—w 0 Oy
S i R

This integral i analogous to Fejér's integral'inj\t‘}i'e theory of Fourier
series. We ghall dea] with it as a particulay case of the following

theorem. : PN
THEOREM 13. Let o\
Ky.8) = O@) O emyi <) (L16.2)
o S
:O(ﬁlgﬁﬁ) (le—y] > 5) (1.16.3) -

Jor some positive o, and, ek
© AN "
lim f Kgdyay — 4, Jim fm Kz, y,8) dy — 1.
Let fla)/(1+agper) belong 1o L(—co,0). Then

O7m [ K1) dy 154001400y (1.16.4
whereter o
N :.?* 1

O O [ et — gy dr °®): [ Ife—t)—p) dt = o )

S ° (1.16.5)
a8 h—> 4.0, The result therefore holds (i} with ¢(z) — Jlz+0),
(z) = f&—0) whereyer these expressions have o meaning, (i) with
$lz) = Pz} = fla) wherever f(x) is continuous, and (iii) with
#(2) = g(2) = fx)

Jor almost a7 values of g,
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It is sufficient to prove that
lim [ Kz, 8)f(y) 8} dy = o,
@z

together with a similar result with i(z}); and by (1.16.2) and (1.16.3)
this ig true if 243

lim ¢ f )~ (@) dy = 0

and lim §« lﬁ&ﬂ%ﬂ dy = 0
80 ; jae—g [+l ’
xz+ A, ¢
The first part follows at once from (1.18.5). Next, let \ N,
B O
x®) = [ fatt—d@id <
for < 7. Then ’ A9
"lfty)— -4, _ 5o i_fm+t)-¢5(a=}1
J Tyt dy =8 '—‘—ta;r":"'\d"'
5 ,\
- o | X
- [£a+1] ‘+ﬁ[ +1)8 J‘taa—zdt
3, H
< bt 1pe ,—f%< (1+°iﬂ)
<\
Having fixed #, plainly ¢ g
\\oo
Tipf 3% f MldJ_o
\*Dx lac+1

=+
This proves the\t'heorem
Asa part@}ar case, let § = 1/A, and

2einiMz—y)
E(oy,8) = oy
The\;ohdltmns of the above theorem are satisfied (with « = 1}. We
therefore deducet the analogue of Fejér’s theorem on Fourier series:

Tauorem 14. Let f{t) belong fo L(—co,00}. Then the integral

;_Ir fdu f flt)eos w(x—1) dt

-3

T,
N

ar

+ Hardy {5).
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is summable (0, 1) to %{f(x—{»(})—{—f(x-,-—o}} wherever this expression has

& meaning; to f(z) wherever f(z) is continuous; and to Jx) for almost

all values of .
An obvious corollary is that if f(z) 4s L{—w0, ), and a(u), b(u),
defined by (1.1.3), are 0 for all w, then f(@) = 0 for almost alf ».
As another particular case, let
A
: K(x,y, E) = 1 f (1-—%—'5)&003 w(x—y) du
CA wo A

1
_A L\
= ;f(l—q)“cos)w(a:uy) de ~A
[

N/

I

1 S
% —pla—igs 2Py
Ty f (1—v)—1ain )w{a; ¥) dv
0 w4

Mz—yl

AN [g— gy |1 \x T wl-e
0 3

The socond formula shows that &' g, 1 /A is O, and the fourth .

that it is O(A*“fx—yl-"“l). Algo,

. o .'C:;l
1 & daps
K N/ dy = _— _‘g_ _— =13 - .
f (xy/\) Y . ,[jy-xf(l 9)*sin do(y—a) do
& . 1]
1 ,i‘“} o I .
=2 | (o)1, f I g — f (I—v)xtdy = §.
FO
Henee ¢/ e e

THROREILS. Theorem 14 45 sll true if (C, 1) is replaced by (0, a),
where 0§<~a < 1. : :

_’;\.l?. Cauchy’s singulay integral.t Tn the theorem of the pre-
Qv‘fllfs section we have replaced Fourier’s formula by a limit of the form

?f.%}, f $P(3u) dus ff(t)cosu(x-t} dt. .17y

For summability (¢, ) we take

. p— [« 4
¢(u):{ (I—u) (0 <u<1),
( > 1).
t Canchy (1), Bommerfeld {1}, Haxdy (4}, (5).
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Next let dlu) =e-*. {1.17.3)
The integral in (1.17.1) is then

@)

1 ~8up — — 1
L J ity dtfe cosufe—t) du — - j i 82+(x o
— o - (1.17.4)
1 3 -
ST (1.17.5)
and the conditions of Theorem 13 are again satisfied, with « = 1,
In particular it follows that (1.17.4) tends to f(x) almost everywhere.
This result is the rigorous form of Cauchy’s argument given in §1.1,<
and the integral (1.17.4) may be called Cauchy’s singular integral:
The type of summability obtained is analogous io summa,biht»y A

for series.

Here Kz, y,8) =

"
£ NN
< D

1.18. Weierstrass’s singular integral. Now let \:
B) = e r~
The integral (1 17.1} is then \\
f@ydt | e cosulx—1) du = ff{) exp{— 0% 4
zéww 4852 '
- 1} \
1 w*w]
Here K(x,y,8) = B SR eX p{ 57 ) (1.18.1)

and the integral is known as, 4 eaerstmss g singular inlegral.t

The conditions of Theorefi)3 are satisfied for any positive «; but
in fact the result holds gﬁﬂl\more generally.

TEEOREM 16, If &(z,v,8) is defined by (1.18.1), the results of
Theorem 13 hold i ¢=C2'f(z) belongs to L{—o0,c0) for some positive
value of C (amr;«(é}or all greater values).

We argugr%“ in §1.16, with « = 1 say, for the integrals over
(2,21-3) and’ (x+3,x+7). It then remains to prove that, for fixed
 ang- s'g,“\ @ \

A% g% exp{—(‘E 432'] +0y2}g(y} dy =0,
Tty
where g(y) is L. Now
- DY e p—)?  {x—a)?
(ﬁ'!__y)__I..O 2 “(33 ¥} +C(x__y)2(z_?iy}zg _-_( 43?) +( 88;?‘)
1 Waeierstrass (1), Hobson {1}, Lebesgue (1), Hardy (8).
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2
if o< L

S 8 k)

Hence the modulus of the above expression does not exceed

U e [
se [ g dy,
+7

i

and this fends to 0.

1.19. General summability. If we merely require to deal with
the case in which f{x-}0) and f{z--0) exist, we can use the following
simpler theorem, R

TaeoreM 17, Let K(x,7,8) = 6, PR N,

b x - .

lim | K(x,9,8)dy =%, lim | K(z,u 8)dy== }; (1.19.1}

fim [ Ky 9y =4 m | g = 4 (L1

and let lim Kz, 9,8) =0 (1.19.2) -

o\ '

uniformly for oll x and y for which ]a:ﬁy} = ¢ > 0, and also, in the
cage 4 = —w0, b = o,

-

im [ K(z,y,5) dy = 0y hm Kz,y,8)dy = 0 (1.19.3)
M_J;o ".’; m'-[e

Jor any fired positive s, &
Let f(z) belong tg L{@Y). Then
B, \\
Jmo K90 f0) dy = $ife+0/e-0) (1194

wherever, i&ze\;!*;ékt-kand side exists,
If j”w continuous at the pont 2, (1.19.1) can be replaced by
p "\’ »

& hm K{x,y,8) dy = 1. (1.19.5)
\/ | .[
We have to prove tha,t
b
J K000 @)—fer+ 0 dy o,

with a similar vesult for {@,2), This integral does not exceed in
- absolute value
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b
max |fly)—flz+-0)! [ K(x,y,5) dy +

TEYSEte

b b
+omax K@ y.8) [ @l dy + (fa+0)l | Kz.y.8)ay,

yrEte zte z+e
which tends to 0 by choosing first ¢ and then §. Similarly for the
other part.

The relevant parts of the summability theorems are clearly cases
of this theorem. They may, however, be exhibited ag direct conse-
quences of the form of the summability factor; the general result g
ag follows. n o

TagorEM 18. Let ¢(z) belong to L{0,00) and have only q,ﬁ}aﬁe
number of marima and minima in {0,00); Tet $(+0) = 1; and let $(x)
be the integral of ¢'(x), which is ultimately negative nomﬁk’é?easing.
Let f(x) belong to L{—00,00). Then R4

tim— | 40w du [ srcosuia—n ar = wg,xfto)%f(x—on
0 —n

wherever the right-hand side exists. \¥,

This follows from the previous theure,r.rﬁ ir’

o

has the properties stated.
Suppose first that 95’(x&§‘négative non-decreasing for all z. Then

Kiz,y,8) =;§}%f{—¢’(3u)}sin u{z—y) du
P\ 0 ]

(a+1)w

O7 o o T
”~.;'§= 2 > f —¢'(Su)jsinu|z—y| du.

- {
N mle—y| £y A
m\{ “': [z_.y'
The sttt is positive, and its value does not exceed that of the first
term. Hence T
8
gL — —¢'(8u)} 4
4
1 om )}
= 0)—g{ 27\l
AR (7

4382 D
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whiéh tends to 0 as § - 0, uniformly for {x—y| > «. Hence (1.19,2
hoids. Also

f K(x,y,8)dy = “gf f‘# (du)sin u(z—y) du

- f # (6u) du fmfff)d

o

= 15 f ¢'(3u) du = 34(1-0) = &,

the inversion being justified by dominated convergence, smo@ &' (Bu)
belongs to L(0,00). Similarly for ( —oo,x), and (1.19, 1} follows
Slmﬂarly,

-
™

3, Csin wlz—y
K(xs ¥, 3) dy = — - (}5 (8%) du XN Ry
1-,( ﬂ f f RS

N
_0( J' {— cﬁ(au}}d‘z%—f-(?( f {— ¢-(8u)}dﬂ)

= O{?{’{'i*o) ?5{3)}"{"0 Y-,
and (1.19.3) follows from (J¢ 19, 2) on choosing first ¥ sufﬁmentlv
large, and then § sufficiently small.
In the more general dase, we can write ¢(x) = ¢, (x)—,(x), where
- $1and ¢; are negatiye non-decreasing. Let K, K, be the correspond-

ing K-functions. JThen K, and K, are positive, and satisfy {1.19.2);
the mtegr&ls .“;g;

,'\ f K{z,y,8) dy, j K, (x,y,8) dy

are bm\mded and (1.19.1) holds as before. These conditions are -
clearly sufficient for the theorem.

\”\ ~1 -20. In all the particular cases considered, we have

K{x 3/,5) = (.?3—-‘],8),
where K(u,8) is an even function of o,

fK(u, o) du = 1,
[H

and lim f K(u,8) du = 0
. 50 )
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for every positive n. With these conditions, not only does
x(,8) = [ Kiz—y,3)fy) dy

tend to f{x) at particular points, but in the sense of the following
theorem it tends to f(z) on the average.

TreorEM 19. If K(u,8) is positive and salisfies the above conditions
and f(z) is L{—o0,0), then

l‘i"i, f Ix(z, 8)—flz); dx = 0. N\
For - ° C}
x(z,8)—=f@) = | K, 8){fle—u)—f)} du, O
[ Ixte, 8)—f@)] do < f do j K, 8)|fa—w=1)| du
s . S

f K(u,S) du J‘\[f{x—u)——f(a, )| dz.

Now ) = j Jf(x~=a“r~f{x ) dz

is bounded for all %, and tends to 0 with u. Let |y(u)| < ¢ for
|| << 9. Then \"\

f K Mu) du

o0

p j K(u,d) du = ¢,

and, if ()] g\M‘
\~' j K, Spb(n) du

MTK(%, 8) du,

wh}&h \by hypothesm tends to (0 with 8 Similarly for (—w, —n).
Henge the result.
For example, in the case of ({, 1) summability,

1 r —co8 Az — y)
- ff(y] No—g dy

converges to f(x) on the average, in the above sense, 88 A —»c0. (Take
A= 13
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1.21. Further summability theorems. In all the foregoing
theorems we have imposed on f{f} conditions which ensure the
existence of the inner integral in Fourier’s formula in some sense
or other. We shell next prove & theorem in which, without i imposing
any particular condition, we merely assume that the inner integral
exists.

Here we are nnt particularly concerned with the behaviour of St
in finite intervals, and for the sake of simplicity we shall suppose
that it is continuous,

TuEOREM 20.% Let f(5) be integrable over any finite mterml n-
tinuous at § = g, and le O\
'\

fm f(reos w{z—i) di ) ,,’;.:’

converge unisformly over any finite interval of mlues@"& If the Limit is
glz,u), then®

Jim A( )g(m ) deg~ o
L

We have "
A - . |
f(l-——)g(m o) du = f f(t)dtf( )cosu(a:—t) du
0 -—»—uou
2 _ ~T T e
-—>-—‘-10 -T T
. h g . f I f
?e{ge : e!‘e’\i'“’? ]x] The inversion is justifieq by wuniform con-
Ief\ N f HOE
Byth
e PYHhe coge u = 0 of the data, fl(i)lﬂbounded, say |fi(¢5)] << M. Now
9 J, = ~ {T)2sm2§}i{:r-i“}
T Re—TE -

— f(a)m“"(‘”*‘) 46N A (¢
fl g ¥~ ff(r) S‘;}{‘;‘;s D g
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on integrating by parts. Hence

M

3 Fodr [ @ 5 M
JJsf = m”‘!*Mf"(t__ x)g“f“MJ‘)((t-_x}a —
il T

2A(T—~:r)2+T—:c'

This can be made arbitrarily small by choice of 7, for all A > A;; and
a similar argument applies to J,. Having fixed 7', J, — nf(2) as in
§1.16. This proves the theorem.

1.22. The general result of the above type appears to be that, if,
the inner integral is summable (C, k), the outer integral is summable
(C,%+-1). The above theorem is the case k — 0, and we sl}all\ngxt
prove the case k = 1. The proof of the general case does, net seem
to require any new idea, but it would be rather laborioug €0 Write out.

THEOREM 21. Let f(t) be inteqrable over ony finite inieﬁwﬁl, continuous
at t = x, and let : ’

B .t N
lim (1 — ;) f{t)eos u(:r-—x{)& ’

o
0 .
and lim ( —m)f@céém(x—-t) dt
.u,-+no-_ f-" ’,":; R

emi?st, uniformly over any Jinite i;ife;'ml of values of w. If the sum of
these Limits is g(z, u), \ N
.1 AL
lim & \(lh-——) glz, ) du = f(x),
A, 7 2 A
N\ ?
It will be sufficlent to consider the case where f(t) = 0 for ¢ < 0.
By uniform.géiwergence
A R\
f (1 “X) glz, u) du = lim
F \'"\ =

h
3

: (1__%"’)2 du f (l—ﬁ)f(t)cos'u(x__;) it

The repeated integral is equal to

f (1-5);‘(;) at f‘ (lﬁ;)gcosu(x—_t) du

By 2 ZsinA@—i) r oy
=J(1~;)f{i){/“—w;ﬁ_.w} dtzal* +§!A_ T
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8ay, W - let,
here im|.<'.’f" < . Define f,(t) as before, and le
. Bay, <4

¢

feG_) —— ff;(v) dr =t f (1-%) f(v) dv.

Then f,{i)t i bounded, as a particular case of the data
On ;wgmtmg by parts twice, we obtain

= ;_j' T T)+—{fg(#)¢(ﬂ) Fo(T)(1
A (1. F,-,.'_f%:( ) ( f

H“

_ +(I~—§)f2(T)¢{T)—~E- j L0080 4t - f (1—~_‘)‘ &(;;\,ﬁ»(g) di,

S -2 2sin Az —t) O °
R U IR T
I Roosde—t) _Geiarie—y)
L

. e 2sinAz--5) 12@5}@:}_}__%;_‘),
= AT R e
Main'ng p._#_o'tj s We obbain OV

where

LAY

Lo . .
=00 a,

> “EEBTH ST (7). [ o7 .
' ' : T ] .
We can choose s, 'la;rg'e that the lagt two terms are arbitrarily
smal] for.aJ;A'\;\' Vi

% Having fized 7 SUTWT) >0 as A oo, and
N oo
" e nf(z)
]
by'the theory of Fejér's inge,

gral, §1.16, and the consistency theorem
~Jor O'S“mmabﬂity, §115. T Proves the theorem,
13w,

%0 seon that the (€,1) of Theoren 14 can be replaced
:by {0’ a}:

Where o jg arbitrarily small Ty 1o 10t true of Theorem 20;
n nejthey Theorer, 20 nop Theorery 21 ¢

an the order of summability
of the outer Integra] pe Teduced. W, shall now prove this by means
of eXamplag, :

: A
Lot Ly = J. (lh-if)acosutdu.

[}
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Asin§1.16,if0<cx< 1,
At
. i
LA = ){“t“ a f v Igin(M—v) dv = 0(}3},&39'1)
1]
ag A =0, { >0, Also

A X
I—ox
%% = O:L_l fva—lcos()tt—v) d’f)—o;{‘:_;:rlﬂ.) ve-Igin(M—2) do

0 o
_— m\l—m R ac—~1 )(t d O 0 .
o cost—v) dv + 0|+ Amw O

. a 7N\ s

= Dok DA %c0s(A— frrar)-F- O(E-2). A D

Suppose that we try to prove Theorem 20 with (0,4{), Where
0 < a <C 1, instead of {C,1). We encounter a term 7))

>
-] \‘
= —H (DL z—T)+ j LT a—1) &

J, = f FOLO, 2—1) di
Ky

Take T fixed {>[z|). Then evet;yﬁshmg is bounded except possibly
the term S
(a1t f H{E-ecos(ar—Mt— e .
Let fit)y = '2~"y\"asinf?."t (v < 8 << (1)),
forv=1,2,.., a;nd'ﬁi)“'_- 0 elsewhere. Then

f‘r@\— yl—cos2%) (vr <1< (v+1)w).

N/

Clearly \'\\

T,
N

'y \ T -
| f(g)@;}ié(x_z) dt = f{(T)cosulz—T)—u j fo{t)sin ulx—t) dt -> limit

as 7' — o0, uniformly with respect o %, so that the conditions of
Theorem 20 are satisfied. :
Let A = 2. Then
(wt+1ikm

L= ]
4 1 (1—cos 2viicos 27
f Altntocosdtds = > f s g,

=1

T
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Thetermv=PiS

)
1 (P+I)wcds 90 1 (P2 ”l +COS 29‘25
i) g [
P
P p

1 l)
— Of—).
i O
~ The remaming terms are
v+ 1)

Z 1 f eos%;%cos(f%"h?}t—%005(2”+2p % 4
1 "R RS2 2 — cos(27 - 20

pE fo41 xe \

=2 (“721“‘21) \~ o[z

Simalarty, f flsinde g, _ o)

sl 9p

YED

Henes 17 >Aieos()w-gm)w~«(lo€x)~« 21 0(1),
for A =2, Finally, the sequence 005(2»"2:

8ince, if one term is 8 sma]l, the next is a
Henee g is unbounded, .

Algo, by Theorem 15, 1 tends to & limit,
20, (C,1) cannot he replaced by (¢,
' l<ao 2, we can the

#me) does not tend to 0,
PProximately —cos }ra.

1t follows that, in Theorem
w, if o<},

b4
El[(A t} = -t_i %%t;??) f v 2008(Af —v) dy,
b

Hence g27 [c’@“conbaum a term

—1)A%-2
R \Q“f?-ﬁ;%-_. f v“*"’cos(z\tf-v) d
3 ;

\ P X —
N/ : A ;tﬂ”«smw %mx)-—f—O( )
and, in th

obtain g, “8“‘“‘3‘1* with (¢, a) analogous to thet of §1.22, we

Plat-ape-a [ J‘ fg(z}¢~w—lsin(z\x—-)cz~éwa) dt.
i

Let S = 220 21

Wt < (v+1)w)
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forv = 1,2,..., and f() = 0 elsewhere. Then

L) =v2(l—cos2%) (v <t < (v-+1)).
Since

co8 u(a:

,u.
f (1-» 5) fBcosu{z—t) dt = fy{u) T H)
0

— fpfg(t){z—“’ sin u(x—t)+(1—f)u”com(w—t}} d, ~

which clearly tends to a limit as p — oo, the conditions of Thec;gem 21
are fulfilled, N\

The proof that the sclected term is unbounded now- Igoceeds as
before. The remaining terms are easily seen to be boun.ded and the
desired result follows. v ‘.\

1.24. The integrated form of Fourier s{ormula It is well
known that the result of formally integrati (& Fourier series term-
by-term is true, whether the original semes is convergent or not.
The corresponding theorem for mtegrals~ls as follows.

TrzorEM 22. If f(x) belongs o L(——oo o), then
£
f f) de =1 f f fOfsinu(E—t)+sinug) di, (1.24.1)

4 1\\ A L .__1 @
f f(x) e;x =g lim f ¢ ——— du f Flt)e dt (1.24.2)

D =T A

Jor all values of §\and
jf{ Yo = 2 f singe g, ff(t)cosut dt, (1.24.3)

f flz) do =§r f “"‘Sf“ du f Fsinutds  (1.24.4)
a 0

Jor § 20
The formulae correspond to {1.1.1}, (1.1.6), (1.1.4), (1.1.5) respec-
tively. Consider for example (1.24.2). We have

A A
—ifu fulf—Ly__ aful
it P9 f f(e dt — f ) de f e

—in
-3 —a
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by uhifbrm convergence. The inner integral is
h .
2 f sinfy-—sin(t—£ju du,
w
0

which iz bounded for all ¢ and A; and, as A -» 0o, tends to 2o (0 <t 8),
0 (< 0ort>¢£). The result therefore follows by dominated con-
vergence. The other formulae are easily deduced from this, or proved
in a similar way. N\

1.25. The complex form of Fourier’s integral. Thé_ pheory of
the complex form of Fourier’s integral is substantiall{"the same as
that of the forms already considered. Wo shall state-briefly the most

~ important results. D

We have so far supposed that all the functiéns arc real. There I8,
however, no additional difficulty in dea]ing with complex functions
of a real variable, and it is natural to appl the complex form of the
theorem to these. The extension of all ie definitions is immediate;
& complex function f(x) is integrable,’of bounded variation, ete., if
its real and imaginary parts segafa}ely have these properties.

THEOREM 23, Let f(t) belond\th L(—oo, o), and let it be of bounded
variation in the neégkbou{koﬁd of t=x. Then

A

A\ o
¢ ) 1 . .

&40 = __1i —fxu il aR
Hftet- IS0} = lim [ e-toe g ff(s)e d. (1.25.1)
L) ~aA -

7 1) Saﬁ‘?ﬁféa}mé' conditions of Theorem 4 in the neighbowurhood of
b=z, the lefhind side may be replaced by f(x).

i k
Wes{-lgxt\mvert by uniform convergence, and obtain

R\ , s @ A
\ N J. g-iu g, J f(g}gitddt — J’ f(t) dt J‘ e-itufz— da
<\; " ~a s - 2
=2 | jpHinAz—1)
[ i,

and the result follows a8 in the proof

As a partioylay Case, suppose in g,

Y= 0, and FA 0 .
by Jorda,n’g( l)e:;m % 12> w0 uwniformly for 0 < argz < 7. Then

a (Whittaker and Watson, Modern Analysis

6.22 = o Lesern Analyss,

§ “22) Flu) = 0 for % > 0. The formulae reduce by a change of
fLa,pla,ce, (1.4.1), {1.4.2,

of Theorem 3.
ddition that f(z) is analytic for
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If we use the functions ¥, {w) and F_(w), we obtain a theorem in
which f(z) is less restricted at infinity.

THEOREM 24. Let eUf(t) belong to L(—c0,00) for some positive ¢,
so that F (w), F_{w), defined by (1.3.1), {1.8.2), exist for v = c,
v < —c, respectively. Then, if f() satigfies conditions corresponding
to those of Theorems 3ord in the neighbourhood of t = w,

fa+A
Hfw+0)+fw—0)} = J(%)hm f F (w)e-tee dw +
B+A
«/(%a)hm. J F(w)ewd"”’
where ¢ = ¢, b < R N

Let g(x) = e-‘“f(a:) {x >0), 0 {zx<0). Then by Qhe previous
theorem

Hg@+0)+gle—0)) — _hm f o1 gy I\\g(z)ew di
4 .

% 3 m

Qvfw T J' Fleeiction gy
1]

»
7 ’24"‘“"“‘;;;

l

1 —‘lxu

v \ Ny {a+A
or 1em{g(x+0)—}—g(x % 0)} = ,J(—%)hm f T (w)e—=w day,

Similarly, if A( x)\Aer(x) (x << 0}, 0 (x > 0), then
\ ib+A
M{h(m+0)+k(a:—-0)} - & )lini f P_(w)e=io d.
BN

’l‘hp\reSult stated follows on addition.

1.26. Perron’s formula.} The formula known as Perron’s formula
in the theory of Dirichlet series can be deduced from Theorem 24.

Ll
THEOREM 25. Let fis) =3 a e
n=1

be convergeni for ¢ > aq, where the A, are real and steadily increasing
to infinity, and let Alx) = 3 a,.
A=z

t See Hardy and Riesz, The General Theory of Dirvichlet's Serics, 12-14,
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Chap..l. :
Tke’nﬁ'k>0,k>cﬂ, .
] k+in(8) :
1 — = -"_1i i lgrx o
HAG O+ @0} = tim [ L0,
kE—iP
Iﬁtl -Ao _ O, Aﬂ, —_ a1+a2+ e +av,n.

If 8 > g, zm.a, e~A# is bounded for all m, and henee, if also 8 > 0,
1

O\
Ay = 3 a,eMB 0 — (et

=1 RN
Hence, if N i the greatest » for which A, < 2, '

O
A(x) = AN == O{ERN;e) = O(Eﬁz)' ”.}‘. »
Hence for ¢ > g, A

(e—t\:;si.g*an+13)

N\

::;ify =g f Afy)e—sv dy.
0 .

f8) = 3 (4,— 4, _j)ehs — 24,
f=1 n=1

Anyy

IX

== % 4,8 —}y
n=1 -
Since A(y) is of bound

ed vari'
follows from Theorem

aidh in any finite interval, the result
24, .}:’." .

1.27. Fourier's theofam for analytic functions. The following
form of Fourier’s thggﬂg\:&

tem applies to a class of analytic functions.
THEEOREM 26, }E\}'(z) be an analytic Junction, regular Jor

. < A<y <b,
wherea > QN> 0. In any strip interior {o —a < y < b, let
N\W
AN - { O(e-0-92) (2 oo) 1.27.1
~}~:\ 1) Ofe-22) (x> —o0) L)
»(or\every Positive €, where )

) >0, u>0, Then F(w), defined by (1.2.5),
Nsatisfies conditions sims

lar to those imposed on f@), with a, b, A, p
Teplaced by X, u, b, a; ang
= _ — 1.27.2
e «/(%)_f Flwlee dw 212
forevmyzinthestﬁp —a <y < b,
We have Flw) = 1

e f fete gt



1.27,1.28 CONVERGENCE AXD SUMMARBILITY 44

and the integral converges uniformly for —A <C v <C u. Hence F{w)
is analytic in this strip. By an obvious application of Cauchy’s
theorem we may take the integral along any line of the strip parallel
to the real axis, Thus

P (w) = J. f(é‘-' - @.q)ea{f%q)(uﬂu) df O( e=nv),

«/(?m)
and by taking % arbitrarily near to —a or b the order-results for
Faw) follow.

The reciprocal formula (1.27.2) can be deduced from Theorem 23; O
it can also be proved directly by the theorem of remdues !th
—a<—a<y<ﬁ<b Then

\.

@ i+
J Flw)e-iw dup = 51; j o=t oy f f(«:)e‘gw iy

e o

w+m
— f L f%*ww dw

{,‘3+co

the inversion being Jusmﬁed by a.ha’olute convergence Similarly,

—ixt
e i f(C)
(2«) f Fufd™ duw = %{J = =%

and, by an obvious; apphcatwn of the theorem of residues, the sum
of the right- han(km eq is f(z).

1.28, Sum\mability of the complex form. The various sum-
mahility j;h;a}rema have obvious extensions to the complex form of
the thgo;‘eﬁl. It will be sufficient to state one of them.

&ﬁﬁhm 27. Let f(t) belong to L(—c0,0), or, more generally, let
j f(t)ee dt

converge uniformly in any finite interval. Then

A — T
—-lmljm (lﬁm)e-”“ du J‘ fityert di
211')—-»02 A



46 CONVERGENCE AND SUMMABILITY Chap, T

18 equal fo H{f(x+0)-+f(x—0)} wherever this expression has a meaning;
to f(x) wherever f(x) 4s continuous; and to f(x) for almost all values of z.

On inverting the order of integration the integral reduces o (1.1, 1,
and the result then follows from Theorems 14 and 20.

1.29. Mellin’s inversion formula. Theorems on Mellin’s formula
may be obtained from theorems on Fourier’s formula by & change of
variable, as the formula itself was obtained in §1.5; and of course
there is no difficulty in adapting the arguments to give a direct proof -
in each case. 8

We shall state only the most important theorems. O\

Trnormm 28. Let y*~Yf(y) belong to L(0,0), and Tet fly) be of
bounded variation in the neighbourhood of the pointlyps- x. Let

E‘f(s)sz(x)xs—ldx (gzk“-ﬁe?t}. S (1.20.0)
’ I x.\\k‘ﬂ'r

Then %r{f(m—i-o)—!-f(x—o)}:%i;kﬁ“ f F(s)rods.  (1.29.2)
N7 ptip

THEOREM 29. Let §(k+-iu) delong to L(—co,c0), and let it bo of
bounded variation in the nesghbourkood of the point w = t. Let

A E+io 7
;@25;1; f Fls)ars ds. (1.29.3)
Then N\ k—iwo X
UL O3+ §{k+it—0))] = Jim [ Sy da.

e m (1.29.4)
Both {héorems are obtained by changes of the variable in

Theor{xfr[ 23, _

0 }{i;some examples the fo]lowing theorem is required.
~\ THroREM 30. Let
N\ FlkA-it) = (t)ein,
where $(t) and (1) satisfy the conditions of Theorem 11, both as
£ >0 and t-> —co; or lef ' '
| () = Ya)eit,
wke::'e ¢ and _:,b-satiafy such conditions. Then Mellin’s Jormulae Rold,
the integrals being non-absolutely convergent,

This follows from Theorem 11 by the usual substitutions.
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Terorem 31. Let f(z) be an analytic function of 2 = re®, regular
for —a <8< B, where 0<<ax{n, 0<B<n and let f(z) be
O(|z]~9) for small z, and O([z[~2+<) for large 2, where @ << b, uniformly
i any angle inferior fo the above.

Then F(s), defined by (1.29.1}, 4 an analytic function of s, regular for
@ <o <band O(e-E-%) (£ ->o0)

0= {ogecay (ts e
Jor every positive e, uniformly in any strip inlerior to @ << o < b; and
(1.29.8) holds for ¢ << k < b. '

Conversely, if §(8) is a given function satisfying the above conditions, >
and f(x) is defined by (1.29.3), then f(x) satisfies the conditions j}{e-
viously imposed on i, and (1.28.1) kolds. N

This follows from Theorem 26, or it may easily be prow;d by an
analogous argument.

THEEOREM 32. Let f(r)x*—1 be L{0,c0); or, more geﬂemlly, let

f flw)at dz = g(s).\:;§ ’ (1.29.5)

-

be uniformly convergent for § = k—}—it ¢ iﬁ’aﬁy finite interval, Then

N

2_1” f_’fi (1_.#_) F(s)z— ds
18 equal to H{fx10)-+-fla— OJ}\wherever this expression has @ meaning,
and in parlicular fo f(w)\@kerever f(z) is continuous; and to flx) for
almost all x,

In the inverse faxm the assumption i8 that 3(16-!—%&) 8 L, and the
conclusion

o [ (11082 pos g, =
O m( logp)f(x) (o)

almost euerywkere

'I*lusf follows from Theorem 27 by the usual changes of varizble.
A particular easef is that, if

[ feyps o, Tf(z)xb-l dz,

where @ <C b, converge, then the result holds for @ <C k& < b; for then
t Hardy {8).
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(1.29.5) converges uniformly in any finite region interior to the strip
a << o < b, In thig case §(s) is analytic in the strip.

1.30. The Laplace formulae. The simplest theorem on the
formula (1.4.3) is

THEOREM 33. A necessary and sufficient condition that f(z) should

b he
® of the Jorm flz) = — f d(w)e*™ dw, (1.30.1)

where T 18 @ closed contour surrounding the origin, is that it shonld be
an inlegral function of exponential type, i.e. such that f(z)\ Oecl)
for some c. N\

The formula (1.30.1) plainly defines an integral fuﬁption of z; and,

if Jw] < ¢ on the contour, f{z) = O(e!). Henee the condition is
Necessary. )

Conversely, suppose that it is satxsﬁed zmd ot

fle) = Z %x’
Then by Cauchy s inequality

N ‘,%‘maX!f(z)i <27

for all values of ». Taldfig r = n,

\\ 2, < Ken—2,
< N = 7! a,
Hence the semes“ ¢(w) _"EIi
n=1{)

is convexg);t if w is sufficiently large, say for {w| > M. Let I" be &
Slmpl@losed curve surrounding the origin, and lying entirely outside
the mrcle [w| = M. Then by uniform convergence

'"\

Q _jé(w)em”dwnzﬂ Gy fuf:jldw~ 3a, zn—f(z),
T

n=0

the required result.
The reciprocal formula, is

d(w) = J- flx)e=* dw
]

28 in § 1.4, but in general this holds for R(w} > ¢ only.
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For f(z) in (1.30.1) to vanish identically, it is plainly not necessary
for ¢{w) to vanish; it is sufficient for ¢() to be regular within T'.
Hence, if we are given f{z} and T, (1.30.1) does not determine ¢{w)
nniquely. Tt does so, however, if ¢(w) is given to be regular and zero
at infinity; and there is a more general result of the same kind.

THEOREM 34. Lef (w) be regular for sufficiently large w, except for
a pole of order n at infinity, and let

j $w)et dw = 0
%
for all t, T being a simple closed conlour surrounding the origin. Then
qﬁ(w) = agt+a, Wt .. +a, wh . O

Let = $lw)—ay—...—a, ", N

where ay4...4-a, w‘“ is the principal part of ¢(w) at"mﬁmty Then

P(w)e™ dw = 0, \

[ S

and :,f:(w) - 0 an jw|~> 0. N
Multiply by e, where R(z) > max ‘R(w), and integrate over

{0,00). 'We obtain
f:,b )-—mdw = 0,

and this holds by analytic cmgtmuatmn for any z outside I.
Hence, by the calcu@ of residues, if I is a circle of radius

R>[Z|, l,!l )
)_.-—J dw

x'\
and, maklng\R\n-) oo, the nght -hand side tends to 0. Hence i{z) = 0.

’o

\ :

O~

4362 E
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AUXTLIARY FORMULAE

AN Formalities. I¥ F(z) and G(z) are the Fourier transforms of
e} and g(z), we have formally -

_ f F(x.)G(x)dx_W%} f G(z) dz f Fyer @t ‘“\-

. < (2. 1_"
\/(2 ; f f1t) de f Ow)eist dee — f s M (2.L1)

If g(?) is replaced by §(—1), G(x) is rep]aeed bg( G(a:} 80 that an
~equivalent formula ig

f F@)G(e) de — f f@g(.s) da, (2.1.2)._
Ty =/ we obtam O |
f iF(:cnzdx.— f ) de. 213)

For ¢ even functions thé\formulae reduce to |

| ,ﬁ&"’)@v@)dx = f f)g(z) dz, @.14)

“ and d f {Fiz)P dx = f {fx)}? da; (2.1.5)"
for .od&nctmns they reduce to o
\W\}_‘, f F{x)Gy(x) de = J’ f@)g(x) da (2'.1.;5)' :
and | j Fe)de = j @) de. e

These formulae are analogous to Parseval’s formula

: f ey de = jait 3 ey
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in the theory of Fourier series. They will be known generally as the
Parseval formulae.t Again,

frel

\/(;T,) :!; F)G(t)e dt = 5-31; “J; F(t)e = dt f glu)e™ du

——0

- 2% f olu) du f Ft)e-te— g
4(2) f gfe—u)du. (218

N
7 AN
7NN ¢

fg(u)f(x—u)du, F@)G@), ~\ (2.1.9)

Thus the functions

«/(2 )

are Fourier transforms, The integral obtained is e&IIeB the resultant
of f(z} and g().
The process may clea.rly be repeated. The\ ﬁmetlons

L-a]

5 | o dvf (u)f(x—ujez) @ F@e@HE)

A A \) (2.1.10)

»

are transforms. So generally are

e f Futn) .[ ot
- Y, b (2.1.11)
X [ Apafe—in— . —w) du

-_—a

and 4 F(2)F,(@)..F(x). J

There are'\analogous formulae for Mellin transforms, which may be
obtamed by transformation from the above, or directly as follows.
If IB) {5(8) are the Me]]m transforms of f(z) and g{x),

+1im k+iw
o f Ble)G(1—s) di = 5 f G(1—s) ds ff(x)xs—ldx
k-1 k—im
o ki
= % ff{x) dx '[ G(l-—s)t1lds = ff(x)g[z) dz, (2.1.12)
0 k~—in ]

¥ The earliest reference to the formulse of which I know is in Rayleigh (1). Bee
also Hardy {3-5), Ramanujan (1)
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or, alternatively,
k+iw k+io

5 | Be—sde= L [ swa [ st ae
— iy k—iw 0
* 1 -3 k+iw : o
=g | glw)de | Fletds = | ga)fix) de.
[ | s |
Similarly,
k+in K+ doo A\
L 55 | SGEd= L f o) de | a1 de
k-—iao k~tmw & \J .
by 1 dx N} \/
=."g(x)f(5)—5:-. SO (2119
o v
If g = f, and both are real, (2.1.12) with{ &= } gives
o f [i}(%+i,t)]2dt =\j\{f(a:)}2 de.  (2114)
Also k4 fo
f J@)g(w)ee1 g — 23 f w1 dy f &(w)a= dw
) ‘,; ka k—in
C ,\»\= J. Flw) dw j glz)xt—r-1 g
L\
k+iao :
2 =§:;, J' F(0)G(o—w) dw, (2115
9 k—ix
\*3 [ e
ie ‘\\ flx)g(x), o f Fw)G (3 —w) dw (2.1.16)
k—iwn
Mellm transforms.
\
1 k+tr:o k4w
Zi | BOSGRds = L f s du [ Fep-ta—tds
K-t k—im
= f g(u)f(%) d_;‘, (2.1.17)

another sort of resultant,
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Hence we obtain as Mellin transforms

f g{u)f(g) %, F()B(s). (2.1.18)

Repeating the process, we obtain as Mellin transforms
w© | P ) =)
[ £t 52 [ Frcstnp 522 j hf (e
it
] 0

F8)F1(8) ... Bls):
From the Laplace integral formulae we derive similarly( ‘bbe

)
Uy g e U] Uy
(2.1.19)

2

formulae P
E+im \ \J
o | e ds = o [ pele f S 2
Sh—im . 3 A
= 53;; ff(y) dy f@s)e&(-%w ds
¢ \\
= ff(y}y(x«y) dy, (2.1.20)

and

s [ HOM—ahemda = o j 1) dy [ (s d

e w
K= [ fgty—=) dy. (2.1.21)
) max(x,0}

We can also mtroduce parameters into the formulae without altering
them essentla.]ly\ Since

“\ -]
7 1 ixula — ! z
‘\/(gﬂ’)# f(ay)eﬂy dy = —"J(Tﬂ)uj‘ f{u)e e dy — EF(E)'

thé\transform of flay) is > F( ) Thus e.g. ‘

_ 1 el 2.1.22
f flang(—by dt = 5 J F(Q)G(b) dr.  (21.22)
Similar changes may be made in the other formulae; e.g.

T flaater-2 do = o= | f00-2 e,
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' #0 that the Mellin transform of f(az) is a="(s). Thus

. ) @ ki

o f flaz)y(br) do = - j HOIG(L—s)a—bs1 ds, (2.1.23)
B 0 k—iom

and similarly in the other formulae.

2.2, Conditions for validity. We shall now give some sets of
conditions for the validity of the above formulae. Some of the most
important conditions depend on the theory of mean convergénte; and
must be postponed until later chapters. The conditions which we give -
here depend on analysis resembling that of Chapter LGS

We begin with (2.1.1) and its special cases. \

Tazorew 35. If f(z) and G(x) belong to L{—afw), and F(x) and
g(x) are their transforms, then (2.1.1) holds. <\

For the inversions used in obtaining (2.1.1).are justified by absolute
convergence. The theorem implies thatf'and & are the given fune-
tions, and F and g defined in terms of them. '

The theorem of course includes, the corresponding theorems for
cosine and gine transforms. o\ .

It follows also that, if f(m)gui’ﬂg(x) are L{—co,w), and G{z), defined
as the transform of g{x);is L(—c0,), then (2.1.1) holds. For, by
Theorem 27, g(x) is thestransform of (). o

A\

2.3. Wenext mk\e some cases of Parseval’s formuls suggested by
Theorem 6. Hgte the conditions are more appropriate to the half-
line (0,00}, and we consider cosine and sine transforms separately.

 TemOREM 36.1 Let f(z) belong to L(0, o), and, in some interval ending
at 0, tend steadily to o limit as x -> 0, Let glx) be the cosine transform of

) G@)s which is integrable over any finite interval, aond tends steadily to
{0 © -0, Then

[ Fio)G ) du = ff(x)g(aé) de. (2:3.0)
1} —=0

We have to justify the inversion

J‘ G () dy ff(x}cosxy dy = ff(a:) dz _—T G (y)cosxy dy.
b H -0 ¢ - {2.3.2)
t Hardy {5)."
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Now A o ’ w0 A
J‘ Gy) dy J. flx)cosxy de = J‘ Jlz) de f G ly)coszy dy,
0 8 8 0 {2.3.3)

for every finite A, by uniform convergence. By the second mean-value
theorem

—et X
| Goy)oosay dy = G [ cosay dy = O{GT@)}
A - A

Hence | }im ff(m) de f Gy)cosxy dy = 0, (2.3.40N

and {2.3.3), {2.3.4) give N

j Guly) dy j f@)oosay d = f foyde | G yosaipdy
b Y 2ss)

for every 8 > 0. It is now sufficient to prove that
\,

hm f Goy) dyff(x)coszy d?&‘ (2.3.6)
If eg., f(x) is steachly decreasmg in (0 S) ~

(oL j flaooszy ds = S f €.(y)cos g dy

Ii’

K
\\ W = fl40 .[ dx f QG {y)cosxy dy
\, _ e, sinéy , )
Ke f<+0)j ()22 gy

where 0 < I;’Q@'S and

O f 0.0) 55 dy = GA) f 8 gy = OfGY)}
/ ¥

for all £, while, for a fixed ¥,

¥ .
as £ -> 0. The result therefore follows on choosing first ¥ sufficiently
large and then § sufficiently small.
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THEOREM 37. The corresponding theorem Jor sine transforms holds
provided that, in addition, G,(z)/x belongs to L{1,0),
In this case we encounter

a
f Gs(y)-lr%f—y dy

at the last stage of the proof, and the extra condition is required here, _

2.4. In the above theorems the funetions on which the conditions

bear are on opposite sides of the Parseval formula. We nexy prove_ :
2 theorem in which they are on the same side.t RN

TeroREM 38. Let f(z) belong to L(0, ). Let g(x) be pq,?uwe non-
tncreasing, and fend to 0 as ¢ — oo, and let N :

7
S

flf(‘) dtf glu) du < 3O (2.4.2)
Y,
Then | f F(2)G,(x) do — f f(x)grx)dx (2.4.3)
and similarly for sine tmnsfms ‘,}“ by

We have

f F0)G.(a) ds = J(ﬂ) {f c(x)dx f ft)coszt dt

“"--_--"

ff @ dt J. Glr)cosxt dz

”" L

= -:Z;f Sy dt f cosxt dx f glu)cos xu du
\“ €« = X )
@ ) = ,%ff(t) dt f glu) du f cos xt cosxu d
o B ' ¢
=2 [ fgt, H)=9 4901, X)—g(—1,£)) s,
0 (2.4.5)
\yhere glt,xy = = f glu) = sin x(E:t_)

T 8ee Hardy and Titchmarsh 3.
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The inversion of the 2 and ¢ integrations is justified by the uniform
convergence of the t-integral, and that of the 2 and u integrations by
that of the wu-integral.

Sinee g(#) is non-tncreasing, g(t, X) -> g(t) as X — oo for almost all
positive ¢, and g{—¢t, X) = 0. Also as £ >0

u .
9t.6) = [ gt =50 du 0l

g
_ o(s Jotw du)+9{gw)} = o(1)

by choosing first U and then £. PR, -
Now M

f ) 2L g ‘_ Jg@m) f sostu—t) duL

< g3y < f g{u{dﬁ‘m f ola) du,

and #
(u)-sgf(u H du| < u’)du glu) du
J (8 :
fg(u) du.
\" >
Hence 4= < Al 2l f g(w) du,

which belongs tQ".B(O 1), by hypothes:s and it belongs to L{1,0),
since f{(t) bequgs to L(1 oo), and

A f g(w) du 0.
Y

The result now follows from (2.4.5) on making X >, £->0, by
dominated convergence.
Immediate corollaries are
(i) If f(z) belongs to L(0,0), and g(z) is of bounded variation in
(0,00), and tends to 0 at infinity, then (2.4.3) holds.
(ii) If fis L and ¢ bounded in (0, 1), then (2.4.2} holds and the
theorem follows.
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- (i) If f is bounded and g(z)log(1/x) is Lin (0, 1), (2.4.2) holds a,nd'

the theorem follows. :
_Apparently f bounded and ¢ I in {0, 1) is not sufficient,

2.5, In a later chapter we find some examples of Parseval’s 8
formula which evade all the above theorems. These are cases where -
-the existence of the transforms and the convergence of the integraly
involved is' obvious enough, and all that is needed is to prove the
equality of the two sides of Parseval's formula. We can' deal with
some such cases by means of the following theorem. Ko\ '

TuroREM 39, Let f(x) and glx) be integrable over any }imte snterval.
Let

Fla a)—~—w f fOed,  G,a) ﬂv_‘%) f g(o)ei= dt,

Cand - | - x@a,b) = J‘g(u}{xuu) du

be “H O(e”™) for some positive c, mde;pemdently of a and b, and tend fo
- Flz), A=), and x{az) a8 & > 0, b = 0, for almost all x. Then

lim ! F(x)G(a:)d:c Hx(+0)+x(—0)}

provided that the lants ‘indicated exist.
Tetd >0, ’I‘hen by dominated convergence
f F(a)g—wﬁw dt = lim f F(t, a)e-ittiut 3y
~& b
s’\\ ) ) .

A\ 0 =lim — ' ~3A -t ud ptat
N . uhi?m/(szw)fﬂx)dxfe e
~\. . —a —an
\ ) . . [+
= lim (23) [ fle)ee+* do,
. -

and the convergence is um'form over a finite u-interval. Hence
&

Jown [ r ("e‘*"““‘“ dt = hmJ{?A)I g(u) du If(x)eww’dx

T

:iljl;\/@)() f g(u) du ‘]' fle—u)e—=* d
: SRR

—a+tu
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atb minic-+a, b)

= ijﬂ\/_(za) j e do j glu)flx—u) du
—a—-b max{z—a, —b)

= A(2}) _fo e 'x(x,b,b) dx,

by dominated convergence. Also we may invert the left-hand side,
by untform convergence, and obtain

.J(27r) f F(G(t, e di.

Hence, maklng b - oo, and using dominated convergence, N
O\

f PGP dt — J(%) J ey (z) de. .‘.}f:\

Making A — 00, the result now follows from Theorem . 60

In particular, the result holds if f and g belong%0 J{—c0,00), and
one of them is bounded. N

2.6. Transform of a resultant. We now’{tum to (2.1.8), giving
the Fourier transform of a product, or of & presultant. From one point
of view this is merely a case of Parsevalls formula, since f{z—au} is the
transform of F()e~i. A new problem ariges, however, when we
consider all values of 2 at oncex \We then ask whether (2.1.9) are
transforms belonging to one of the general classes already considered.

TarorEM 40. Let flz)(be the transform of a function F(z) of
L{—c0,00), and let g(x) belong to L{—o0,0) (s0 that its transform G(z)
is bounded). Then ,J(Zw)F(x)G(w) belongs to L{—ov,00), and its trans-
form is C
\\" E(x) = f glw)f(x—u) du.

07

For the, m%ersmn in {2.1.8) is justified by absolute convergence.

THEQBEM 41. Let f(z) and g(x) belong o L(—00,90). Then so does
(x{ wid its transform is \/(2m)F(x)G(z).

For a
J‘ klw)etr* du = j ¢l dy j flv)glu—rv) dv

o2 a4

J‘ flo)dv f glu—-v)ets® du

—G&

f

= [ fomin | e

— -t
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The inner integral converges boundedly to ,/(27)G(x). Hence

j klu}e® du = ,f(2x) J? J(2)e™G(x) dv = 2xF(x)Q(x).

2.7. Mellin transforms.
THEOREM 42, Let a*-1f() be L{0, 0}, and G(1—k—it) be L{—a,w),

or allernatively let §(k-1-it) be L(—c0,c0), and x—*g(x) be L(0,00). Then
(2.1.12) holds.

For the inversion which givés the formula is justified by dbsolute
COLVETgence.

N

AL
TamoREM 43. Let f(z) and g(x) be integrable over any-finite interval
not ending at x = 0. Let ~\*
a 2\ 3
Bo.0)= [ felrtde,  6(s,0) = f gl
1ja Yo
tend fo F(s), B8} for o =k, 0 = 1—F regpectively, for almost all 1, -
m such @ way that e~*%(s,a), e*‘-‘lm(ﬁ({’,ﬁ) are, for some positive ¢,
bounded independently of a. Let N '

b NS
1-k £
ng f Aajg(ee) da.

Wy

3

be bounded for all a, b, ¢, and, 286> 0, b->0c0, converge lo & continuous
limit in the neighbourhdod ‘of £ = 1. Then '
_1 )

A ~o
27?%';1—?.9\," BEO(1—s) ds ff(x)g(x)dx,
. 7 B8 iy
provided theloft-hand side exists. '

This fellows at once from Theorem 39.
' ’ltlgeﬁ,nalogue of Theorem 41 iy

.\?‘:EEOREM 4. Let a*f(z) and xhg(x) belong to L(0,c0), and let .

V o)~ j () 2.

Then Fhiz) belongs to 1(0,00), and its Mellin transform is F(s)5()
unth o —= k-l_—]. .
2.8. Poisson’s formula, This ig

BRI+ $ B} = valLf(0)+ S fm),  (281)
where off = 27, 0 > 0, .
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We shall provet

THEOREM 45. Let f(x) be of bounded variation in (0,0), and tend
to0asx—co. Then

8 S Fnp)
n=1 3 1 (M + )
= o lim [%f(0+0)+m2= H{flma—0)+fmat-0)} — - j 10 dt]-

—w (2.8.2)
If also j f() dt exists, then

N

AN

BEO)+ 3 Fnp))

\

= “a[3f0+0)+ 3 %{f(ma—o)—l-f(ma-i-o)}l Rere

If also f(x) 15 continuous, then (2.8.1) holds.

Since f(2) is the difference between two non-inereasing functions,
each of which » 0 as # —» c0, we may take it to\be one such function,

The integral
Fa) = J(;) J' . {@mﬁxm

exists for 2 > 0, and

¥8 5 F(m)

I T2 19 e
M (2m+ )wfﬁ

- 's/ (26) g NG J [f(t)-ﬁf(zn";;wr )}Sm(nzéﬁ)f‘ dt +
*V/ ( 52 f {f(t)—f(zm” o)ttt g -

m—l(

g Sl

(2M+1)/B

- j(—) f fodt. (28.4)

1 1do not know whether this version of the theorem has baen published previoualy.
I ohtained it by combining one of my own with ons communicated to me by Mr. W. L.

Ferrar., For other methods see Linfoot {1}, Mozdell (1).
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Now ' _
(2m+1ymif .y
' 2m7r sin{n--1)8t
o5+ o) S
2mmf,3

- [y e

=) [

by the second mean-value theorem. The last mtegtsal 1s bounded' -
'forallnandf egas : '

B x “’”;?M
AN g
. ! sm(iri,-i-e)ﬁt(2gmE % ﬁt) dt —i~ J:B& .

“and | 2 ((2m+1)7r }\RQE?E_FO

is convergent. Hence the first serles on the right-hand side of (2.84).

is convergent as M > o0, umﬁxrm]y with respect to n; and each term

tends to 0 as 7 > co. Hengée he Limit of the sum is 0. Similarly for

the second series. This proves (2.8.2); and (2.8.3) and (2.8.1) clearly

. follow from (2.8.2) i ‘the cases stated.

‘There are als lﬁof-e complicated formulae of the same type. Fcr'

example, Rame%;en‘i‘ gives
» NBF(B)—F(3B)—F, (5ﬁ)+F(7ﬁ)+ 3
\" = alf(a)—f(82) () +-.),

th;]\‘Qaﬁ I and

N VBB —E(B8)—F(18)+ E(118)+ F,(138)— ..}

= Va{f(o)—f(82)— ..}, N

\ Where off = 3, and 1, 5, 7, 11, 13,... are the numbers prime to 6.

These formnlae aze easily verified by the above method.

'.\’.

2.9. There is another interesting formal method of procedure.}
Suppose that f(x) is represented by Mellin’s integral
e+iw
) = M f () ds.
¢—ix

t Ramanujen (2). ' i Ferrer (2).



2.9 AUXILIARY FORMULAE 63

Then formally .
ﬂg]f(nﬂ) == E_Z:R J. .g(&}ni;l(m)—sds c>1)
: e—im
1 e+ia
~ 55 | e

Move the line of integration from ¢ = ¢ to ¢ = —b, where b > 0;
I{s) has a snnple pole at 8 = 1, with residue 1; and A\

59— 101 j {f@)—f O do + f flopids | O

has in general a simple pole at ¢ = 0 with residue f(f))' Smce

L(0) = —1 we obtain »"\ o
50+ 3 fna)—a (1) N\
) 1 —btiw \\
e aane\*
i £ BOeh 200
1B+ ’
:21? j 3({?73?3L‘(1—s)aavlds
1+b—dm "
1+b+im‘\
- L \E 3(1“3)1'(3)003%3#;(3)( ) ds
C ARb—ic
Y o I+b+ie e
”\}_Z | I (p.g)f*(s}coagm(??) ds.

\ n=l14p=iw
But by (2, }%), with f and ¢ mtercha.nged and

O 9(35) — cosz, O(s) =D{sjeostsm, b=1,

\ ) N ' k+iw
Ro= 2, | s0-onemisraa
2mk )
We have therefore obtained (2.8.1) again.
We shall not attempt to justify this process here. The main interest
of it is that it suggests a method of dealing with sums such as

3 awta,
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where d(n) is the number of divisors of ». This sum, for example
gives

1 ¢+im .
s | B s
et L e
= HO+FO-280+ 5 [ Berw s,
and the last term is . e N\
1 14+b4-io ’ ] - .
| BO—a00—sd 2
1+b—iw Ao
1+b-+in NG
- % j B(1—)X(a)c0?hem 2-2A"(2(s) ds
1+b—im v
1+b+io RN
Z 2d(n) J' F(1— 4T (s)cosThsm (4n®n)= ds.
n=l 1+-b—im :". ’ .
From (7.9.7) and (7.9.11) we deduce
k-’l—'wo
- 0(x) —Y(z) = -——H J IM(is)cos?}sm 2564 ds (k> 1),
\“ k-—iw .
and, pmceeding Kaé\‘béfore, the result is
2, T00) = HOH5 ) -250)+
O SR ¥ [ HNE )= .
<N\ .
' 2 10. Examples (1) Letf(a:) =%, Fi{z) = J(2) 1+x . Then -

\‘;

wft $ o) =V 2 )

(il) Tet f(z) = 642", F(a) = e-##", Then

Vol 3 e = (34 $ eow),

(ii) Let f(z) = e~#'cos . Then F(x) = e-#%+2900gh k. Hence

! < ._ xtn? . =
w(%—%ﬂgl.g tatn’ong kom) — \,}g e_y;e( 1 +ﬂ§1 e~18n00sh k ﬂ}_
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(iv) The function f(z) = ?%Ij—}_fzf satisfies the condltlons of Theorem

45, but does not belong to L{0,0).
(v} Let f(a:) = g%in% (1 << ¢ < 2). Then

ﬁ(w) F(l—s)ﬂm pom (@ 1—de—2 =t 2P) (&> 2),

¢<2 )

F0) = P(l —s}sm 18w (—25-1),

«/(2 )

Hence, taking o = i, # = 4, O\

[‘_(]‘__Z‘ﬂiﬂ%ﬂ"{_gs—2+ il((em)s_l#%{4”’_2}3_1'_".%&;&4-2)8—1)}’

or : ' NV

14—+ = %I‘(lw—s)sin%sw#"‘l)'(,fs\ '

L ¥
)

1 0% 11 )}
{ 3T Z ((2n)1—s 2 tznul)l-” 2 (2n--1)-¢
This is the functional equation] for (1 —2-){(s).

(vi) Le O
N\
flz) = P(2+ )(I—xz)v -+ (0 <z < 1), 0 (x=1).
2
Thent x'.\"
P o) @>0, F0)=27T0+1).
H. K\
enee \
"\:1:\;’" J L(nB) 1—n2a2p-il,
2”“QP(v+1) ('nﬁ)” ~/ (ﬁ) T H‘) ( ]

where, in the case v = }, the term n = lfa, if it occurs, is to be
halved.

This is a case of Theorem 45 if v > 3. Actually it is easy to see that
the same proof applies if —4 < v <}, provided that « is not the
recipracal of an integer.

1 8ee (7.1.11).
1242 F
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2.11. Sine transforms. The corresponding theorem is

TuEOREM 46. Let f(x} be integrable over (0, 8), of bounded variatioy '
over (8,00), where 0 <7 8 < 4, and tend to O at infinity. Then

VBEBY—F38)+ ..} -
= [H{f(a-+0)+fla— O} —Hf(Ba-+0)+fBa—O)}+...], (2.101)

where off = 1m,
In this case the right-hand side is necessarily convergent.

Proceding as before, we obtain N\
“"ﬁ[ﬂ(ﬂ)*F BB)+ ..+ (— 1P E{(2n 4+ 1)BY] S
—1)"R sin{2n - 2) Bt A\ QO
= T(%)_ J. 7e cos Bf A ™
m:!r '\g.
= ("U“‘“’ﬁ < sm(2n+2)ﬁt
N ) Z_l f b )m-——wmsﬁt di
=1 - Tymig s
I
1ym-t o (m— 3 to) sin(2nt-2)
- gt S [ s

This differs from the rlghﬁ hand side of (2.11.1) by

z (“l)m"l Lm l)ﬂ-—J-v {(m—%)n_i_o}]sm(‘zn—f«mv v+

A ginv
g e s

‘-éff

\
and Ke*result foliows as before,

E‘X’EMPL}:. Let f(z) = 2% (0 < 0 < 1). Then
.“\ -

I~ - E@ = JEra—seos jorzeey,

and
T —s)cos it (@14 3 — vafarem oot

o (—’21') CO~sjosjomLll—s) — L(s), L) — 1 o

2.12. More general conditions. The next theorem is a more
general one, in which f(z) is not necessarily of hounded variation.
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TEECREM 47. Let f(x) be integrable over any finite interval, let
fxﬂ S 277, and

xv) = 3 fly-ne) > 1), (12,1
and 1xv(y)| < $(y), where ¢y} is L{—}u, o). Then
Fnf) = J (%) f flw)oos nfx da (2.12.2)

eansts for every n, and

lim B30+ 3 Engle8) = bl ch0) 1+ 01 2~ \
(212.3)
provided that tke_mght—ka?zd side exists.t R 2\
We have “~ "‘:
(N4 D .y mtda A
f Jlx)eosnfx dr = Z f flz)cos nfx da/

fo L m = N
N
=2 f fly-+majeos ny dy ~\} Xw(y)oosnfy dy.

— 3 V- jou

(N4 A
fiz)oosnfs 4 jqb(y) dy.
o — i

Also, if (N-[—%)a: <X < (N+§=}a,
\ (N+8a
f f(x)cosnﬁxd\a; f | flx)] d

(N4 e {N+ Ha

@7 = T iwarxatollde < 2 [ 4o
x'\‘ -4 g

Hence \:\ J flz)cosnfe dx

Hence

iy bomsded for all # and X Also
\ N Jﬂ)a

(V11
tends to 0 as N —»co, N’ — 00, by Lebesgue’s convergenece theorem;
and similarly

(N4 B ™

fxcosnbr de > 0, f flz)eosnfx dz >0
iy (N

f@)cosnflz dz = L{my)—mm}ws nfy dy

% Borgen (1).
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if V—da<PT<V+ho, WHPe< T <(N'+3o, T,
T’ —co. Hence (2.12.2) converges boundedly for every n.
In (2.8.1) with o and f interchanged, take f(z) = -3 cosay. Then

and we obtain

Blar Semsomnte) = [5) > s o
— JamK(y,3), O

{

N

{ Ton )ff(y) dy + J ( ) S e—BnB J cos??ﬁ?fj(@f};@'}

say. Hence

=

’r"v’oc Ky, 5) d
& ff(y) . 3) dy.

By the hounded convergence of (»2‘ 12 2}, the left-hand side tends -

to that of (2.12.3) as Y—>oo Aﬁso since K(y,8) is periodic, with
period o,

f JKiy. )iy < { f + 3

{m+ o

]f(y)K (y. 2} dy

Ym= Pa

i
O= j SR8 dy -+ 3 [ furmaki,s) dy
A\ '
::\'": D‘
N f FoNK@.5) dy + | x(y)K(y,0) dy,

iy P
by t}xe dominated convergence of the series, K (37, 8) being bounded
fbr a fixed 8. The result now follows from Theorem 17, with z = ¢,
\ a = 3% b = }o, and K{0,y,8) = K{y,3).
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3.1. Plancherel’s theory of Fourier transforms. Tre formulae
(1.2.1}, (1.2.2), connecting a pair of Fourier cosine transforms f(z),
F{x), express & relation between these functions which is formally
symmetrical, But in all the theorems which we have proved so far,
the two functions satisfy quite different conditions, so that the
symmetry is only formal. A

A theory of the reciprocity which is completely symmetrical was
first given by Plancherel. ¥ It depends, not on ordinary convergeme
or summability, but on mean convergence. O

For complex transforms Plancherel’s theorem is (™

TuEOREM 48. Lek f(x) be o (real or complex) fumz{on of the class
LA —o0,00), and let

Pz,a) = J(%) j ey’ (3.1.1)

Then, as @ - o¢, F(x,a) converges in mean over (—oo,00) fo @ function
Flx) of LY —o0,00); and mcsprocally

flx,a) = h Fly)e-tov dy (3.1.2)

converges in mean to f{x
- The transforms f(x), a:) are connected by the formulae

1 i a g1
e d L. 3.1.3)
o= dx_f s (
O o 1 d [ opyei—] 5.1.4
\ flz) = N )d:v F 7 1 (3.1.4)

ftﬁ\almost all values of .
It will be seen from the proof that we mlght replace F(z,a) by

Ple,a,b) = f f)e dy,

J(2 )
where ¢ — o, b >0, in any manner.
+ Prancherel {1), (2), (3, {4):
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At the same time we obfain

Turorem 49. If f(z), F(x) and g{x), G(x) are Fourier transforms.
as in the above theorem, (2.1.1.), (2.1.2), and (2.1.3) hold.

For cosine and sine transforms the theory is as follows.

Tunores 50, Let f(x) belong fo L¥0,00), and let

Eoa= [ & of fghooszy dy. .

Then, as &+, F(xr,a) converges in mean over (0,c0) fo @\function
F(x) of LX0,00); and reciprocaily ' o\

Ny

Y

5 a) = J(%) f E:(y}cosxyif{ .

converges in mean o f(x). We have alﬁost evéryrwhere
. 9.\

9N d [, sin Ny a [ sinay
F = -~ —xg 2= —} = —---{?J .
=~ [ f 0=, = B L [ o™ ay
™ _ o
TreorEM 51. The amlog.@ie. gf:‘:’t"'keorem 50 for sine transforms holds,
with cos vy replaced by sin wy dnd sin xy by 1—ocos xy.

THEOREM 52. (2.1.4),(2)1.5), (2.1.6), and (2.1.7) hold for transforms
Of 12 ’ :“‘\ . .

The cosine and s@ theorems may be obtained by taking f(z) even
or odd in the ‘cemplex’ theorem. '

> N\
We sha]!,glye several different proofs of these theorems.

.“\‘0 .
32 Fourier transforms, first method.} This is suggested by
Four@r 8 formal process (§1.1). Let |

m:“\. O +1)A _
QO 4= [ f@dz (pr=0,11,..),
»A
and O, (x) = i a, vz,

v=—n

Then if & > 0 and n ~ [AB]—1,
b

lim®, (@) = [ fiy)ior dy
b

1 Titchmarsh (1), (2).
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uniformly in any finite interval. For

b n LA
O (@)= [ S dyl =l 3 e —eieny dy —
—b |v=—n viA
b —njA
foer iy — | fge dy|
(n+1)A b
b b ~nfA
<f [+ | vona+ | voiw-o
—# (n+1)A b A
since Ie{vmf?t__gia:y[ < #/A in each integral. |
Also {r+11A (r+13A 1A : \ ‘~,\
wr< [ lerde [ de=g [ VP
wfA vl wiA " :
Hence, if X < A, \\

j B, (2)}2 d2t < f @, (2)[* dz = f ( 3 a3 a6} dz
°x

L —n\ W =1

(n-+ 1A
—om 3 lal<o [ Py da < 2 j \f(z)|? d.

y=-a -\n!}\

Keeping X fixed and makmgﬁ w> 00, it follows that

] ff(y)f”\dy < 2 j fe)|? da.

EMES J

Ma‘ldng X hh)m .: ...\
f\H ff?f}e'””dy\ dr < 2 j f@krd.  B21)
\om b

Tt we take' ﬁy) = 0 for —a < y < @, this gives
"\"

Q” f[F(x,b)—F(x,a)de (f j+ J JNERS

which tends to 0 as @ —co, b>oc0. Hence F(z,a) converges in
mean, to a function F(x), say, of L¥—w,); and, making & >co in
(3.2.1),

j [F@)?dz < j ) da. (3.22)

A similar argument now shows that flz,a) converges in mean, to
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$(z} say. We have to prove that $(x) = f(x) almost e.verywhére,
and for this it is sufficient to show that

¢ ¢
j $(x) do = [ flz) de
L1}
for all values of f Now

¢
f #(#) d = lim f(x @) s — lim J(%) f dx f F(y)e "qu

e f‘y—- if.;_l

“‘*”"‘\/(2 }f —1y dy = J(Q ) f K(})‘_‘—“—dj

On the other hand, Theorem 22 (1,24, 2, mtl\f(w) = 0 for |z] > q,
gives

e-—tfu___
!f(x)dx = ‘\/(E;T)l; s if’@s,&) du ([¢| < a)

. emifu_ > i
- But lim | €501 F(u, g,)'du = f el F(u) du,
[ U ’ U

—w —@

sinee (e—%v—1)/y be]onga to L‘*( —a0,00}. The result stated therefore
follows.

Incidentally WKQ &ve proved (3.1.4); since we may now argue
similarly with {3 1.2) instead of (3.1.1), (3.1.3) also follows,

Also we may mterchange Sand Fin (3.2.2). Hence in fact
'\..' . . ) e
P& de = [ [f))2 de.
N !

If G(-?B) is the transform of g{z) in the same sense, 4 ¢ is the
t"hnsform of f+g; hence

\ o o
| 1F@)+6@pde~ [ i gy de.

. -y
1.e.

[ AIP@ -+ 6@ 2R P () F()) e

= [ 70)1*4 19 P+ 2R f()ge)} e
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Hence R [ F@)lz)dz =R [ j@)ie) da.
Arguing in the same way with f--¢g, we see that the imaginary parts
are also equal, Hence

| Feoeyde = | f)ie) do.

3.3. Fourier transforms, second method.{ Let f(z) belong to
I*(—c0,0). Then we can construct a sequence of functions f, ()
each of which is continuous and of bounded variation over a ﬁmge
interval, and zero outside this interval, and such that N

L\

-
s
L 3

j f@)—ful@)}2 dz > 0. 2
o \ g

Tet @)= s f Fuluetes dan)
2\

Then

s N
»,’

J. |7, (x}|? do = élf,} J: dx j: XN {u)e”'“ du :£ f,.b(v)e-f”” dv |

i\ m’\fﬂ(ﬂ) du f Falv) dv fﬂfﬁ“‘”’dx
¢ ?’\ -4

—

Flar) du f fAD sl

}
=2 [rion|

By th&bﬁeory of § 1.9, the inner integral tends to 2nf,(x) uniformly
over a'l’%y finite range, as A >oo; and hencs

Q o w
[ 1B@Pd = | Ifula)l du.

Similarly
[ 1) Fyo)de = [ 1nle)—Fale)*

T Bochner, Vorlesungen iiber Fourierache Integrale, § 41.
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and the right-hand side tends to 0 as m and # tend to infinity,
Hence F, (%) converges in mean, to F(z) say; and
[ PR =lim [ |F@)ed

=lim [ f,@)Pde = [ |fz)}*da,
- ) B e —m
“This function F(z) is the Fourier transform of fx). Tt is of course
not yet obvious that it is equivalent to the transform obtained efore,
or even that it is unique, since the sequence Fal) is ngh, unique,
However, we have : PR
E . . 5 - 2 \ \ )
1 . 1 “a el
Pl de — .~ P I R i
J e do= o [ ao [ g an Jea P he
1] . — o ¢ § —m
(the range of infegration being really ﬁmte{ Making n — co, '
' £ : o N
1 LJefu ]
Flayde = - . " du,
| 3[ e~ 153 f i) —,— du
since (g# “—1)/(3u) belongs to Q?{~’ﬁence
18 d 3 gizu_]
F = N
9= oy | s

almost everywhere. ]s’[‘e:foe F(z}is unique (apart from sets of measure
zero), and is equiwfalent to the transform obtained by the first method.

In the first wethod we deduced the Parseval formula from the
reciprocity; A this ‘method we have proved the Parseval formuls
' ahe&dy'\i':ﬂ& we deduce the reciprocity from ib. As before, the

Parseval formuls gives
O [reEe = [ e o
Let g(x) = 1 (0 ;g_; < &), g(m) =0 E: < 0orx > ¢). Then
%) = famy a%f Ca
_ 1 d Feuy 1 g1
e | St e e 2
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Hoce f P e = f flo) dz,

so that f(z} is the transform of F(x).
Again, let k{z) = f(z) (—a <z < a), 0 (2| > a). Then .

d & fru__} - &
Hz) = J(;;) ﬁ_f f = du = J(;ﬂ) f fwe™s du = Fiz,a)

with the usual notation. Hence the transform of F(z)—F(z,a) is
fw—hia), ie. it is 0 (jz| < a), f(o) (2 > a). Hemee

N
£ \\’

[ re-reore=( ]+ [Jrore S

£ NN
S )

which tends to 0 as ¢ -co. Hence O
F(z) = 1im. F(z,a). o

3.4. Fourier transforms, third method, T“g‘“ppose firat that
J(e) belongs to both L and I¥, and let X *)

P = o f *’f“)‘*‘”

Then
¢ 1 mx"\\ < < ]
j*‘i‘*s"“‘lff'(sv)IEl ds = \.[\'\‘eﬁ’is'z' dx f fluyeien du f Fo)e= dv
T
4 ~’\N‘x S . . o «w .
x'.\’z"zl j Jlu) dw f flv) dv f giPetinly—o) g
:"\:‘. 11'_ B
'..\3'."" =5 \/(2@) j fl) du J. Fwe-iw-or* dy, (3.4.1)

AV

and b}’ Schwarz s inequality for double mtegrals

e~ Hu-orlS dudy

- —p
o 0

N Flas)e-tu- Fo)o- 1w dudy

—® =

i F. Riesz {2).
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o

< ‘ j? J‘ jf (u){ﬂev%(u—v)’fa’ dudy j? j.?| f(g)lge-’i'(u——v)'f.al d ud@}% | ..

—m —w —w —w

o

= [ [ 1w e gug,

—@ —o

= jma flw)( du fne—!f'ﬁ' dt = 8y(2m) [ {f)2du.

=+

Hence [ e F@Pde < [ fw) du,
—m ]
and, making 8 - 0, it follows that F(z) belongs to L3 £8g;00), |
Also (3.4.1) is equal to O ’ ]I
1 [} o ~ ! “.( s..}: . ’ ‘
s | flu) du f (21 E)e—t0 gt D
) !D s [ 1 < ‘

LoF e s f
~ 5 f e-itlb dt_f f(u)f(uf.\@);?;“— EN i

say. Since f belongs to L%, iszb’(fuﬁéled and continuous. Hence

e~y(t) ds

o -3 ,:~'“ 1 o '
1 — 135 &dp — i ~3R(E) di
[ e de = tim / AT @ = lim s [ e

_—0

N/

S0 = [ 1) du,

N\
by the theory pf}Veierstrass’s singular integral {§ 1.18},

The existefics of F for any f of L% and the reciprocity, may now
be proved ad in the previous method.

3.5\:3:ﬁe Hermite polynomials.} The Hermite polynomial of
degree « is defined by

: . "

O @) = (1pe(7) e, (5.5
N\ "and we write .

$u2) = eH, () — (fx)#ew(%) e, (3.5.2)

The interest of these funetions for our theory is that they forn} an

orthogonal sequence, each member of which is, apart from a trivial

factor, its own Fourier transform,

t See Wiener, The Pourier I ntegral, 51-71.
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We have i N
R e Al

(é-';)nfze—’” = (&%)RH{ — ) = — 2:::(%)“-}13—”’—- 2(n+ 1)(%)“6-@'

Hence

$ul®) = (—-1)"'{(932-!- 1)(%:)”}5—%’—2(%;{_ 1)({1%)“3-3'] ghat

— (x2—2n—1)¢,(x). (3.5.3)
Thus 5 = ¢, (%) is a solution of the differential equation
g2 AN
ey = —(ntly. (304)
Putting y = ¢~#"y, we obtain N
d2  , du O
| I — 9 T = —2nu, v \ (3.5.5)
so that A, () is a solution of this equation. N
Further, it is the only polynomial solutlon \Eerr let
U = a0+alx—|—
be a solution, Then o\
Sarir—1)ar-2—23 a,,ﬁb;'s: — Y @,
Hence (r+ 1)(r+2)agpes 20—,

and the general solution is the\ sim of two series, of which the one
in which r has the same pari t‘& ak n terminates, and the other does not.

The Hermite functiondvd,\x) form an orthogonal set. For by (3.5.3)
‘f"'m(x)qsn(x} 7 ¢n(x)¢m(x) = g(ﬂ“m)?sm(x)ﬁbﬂ(x)

Hence

. o
[ $uirbile) an = 5 1 gl
if m, ;E\n”\ ' =9
\ ¥
3.6. Tarorem 53.+ If [t} < 1,
ezt 1 x2__y2 (_q;__yt)
Z Y H @) H () — J(l_-—_zé)-exp{~—2—--———lr_ . @)
We have . 71_ f g—u' +2IEH gy,

=0

1 Bee Watson {3).



78 TRANSFORMS OF THE CLASS L= Ch&pl[I

— 24 )ner? -
and hence - Hn(x) L—:)_—_ J. ulg—wH2zu gy

—a

Hence

Z T 1, 0)8,)

ne=0} W ow
gt i J‘ J‘ (— 2tuv}“ ~ W BTt 2ie o
= AN

N

—
L) :\ \~
— ‘ﬂ{fiﬂﬂ) f f it % T T T TINE T d%d%,
%% :‘3‘«
N O
- 7 J. e—(lnf‘}u‘-j-&i(x-yi)u dﬁ‘\

_ z
' Tho i Inversion is justified by the con.Vergenee of

f f i e-—ﬂ'—’v'-{-EAu-{—SB‘v dudv
Jz

— —gy TG

ifp < L Q S
TrEoREM 54, .T{wff};miom
() = __Pn2)

_ (2”%"\"17)*
form q Wm'ortht?gmml Set over {—a0,w), i.e.
9.\
o° w2V, d-{l {m = n)
N fwx)wx) "=10 tmam
Fﬂr M # % the resyl follows from §3.5. Also, pulting o =y
~C i (3.6.1),
S e (zy 1 ‘
ZW = tz)}exl’( 1+t)'
Hence

z t“T f ex'{H(x)}de-_J{w(l. & .f ( )da:

“Smr ) - - 3
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Eguating coefficients of 7,

[ Gal@lt e = [ el (o) do = nivi,

and the result follows.

3.7. THEOREM 55. If f(x) is any function of LE(-oo,aﬁ), and

= [ fleWnl@)dz (m=0,1,2,.), (3.7.1)
o | .
then lim [ |fe)- 3 apu@ ds =0 (g79)

N

We can write (3.6.1) as
o 1 2 .0 -_’ ~ \2 3
Denote the rlght hand side by Kz, y,1). Then\“K (:c Yy, 1) = 0, and

(putting y = 2wt/(1+t3)+u) ,,\*'
~Firpne 'cg"} s
K@,y t)dy = | N gd"’“
L i
\ _;_ ,
— (1_‘_‘2) . LEE Ly |

a5 ¢ > 1. The conditions ILIB‘ 2}, (1.16.3) are also plainly satisfied.
Hence, if f(z) is any contﬁl ous function, vanishing outside a finite
range, by Theorem 17

R *\hm f Kz, y,0)f(y) dy = f(x) ' (8.7.4)
Hence; mult;p‘lgnng (3.7.3) by f(y} and mtegratmg over (—c0,0),
O 3 a0) = [ Kiwv,00) dy @
’"\‘ w4 ' M, ” A w, 2 — T
\ } e J. y Yoy

8 ¢~ 1, and the convergence is plainty bounded. _Hence, multi- |
Plying by f(z) and integrating again,

Z Az — f {f(x)}? dze,

80 that ﬂzuai — J' {f(x)}z da.

-0
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Now let f(z) be any function of L*—ew,00). Let f,(z} be a continu-
ous function, vanishing outside a finite range, such that

[ o -fepa <o

and let by, = J’ @) d.
Then - -
f {f@)—ay, (@)~ ... —a, ¢, (@)} du SRR\
- Oy
= [ fepd+3a,—2 3 ot O

> [{fepde—Sa = [ (o) @S ~a, b} b
and also | ‘x’,\\"‘
<2 j {fe)fie) do +2 f {fv(x) S le)— . =, ()} I

< Zet-2 j' {f(a:)}zdx 2@?» w203, < 3e

for n sufficiently largg“.’\‘l‘hls proves (3.7.2),

THEOREM 58. Iﬁdl;' By, o are given numbers such that 3 a i

an:rgent there™is a function f(x) of L¥-—co,c0) such that (3.7. 1)
"\ ‘) .

This is¢ the Riess- Fischer theorem for the set 4, (). By Theorem 54
”::\\“.. I |2 ante e = §
\~\ ‘;hlch tends to 0 as n and N tend to mﬁmty Hence, as n — 0,
2 T Pil)

converges in mean, to f(x) say; and

Jf(a:)s&,(x)dx lim [ 3 Gudulol(z) di

= g,.
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3.8. TauorEM 57. The Fourier transform of ¢, (x) ¢s ™, ().

For
o o ' l I !
[ guereor e = =1y [ e (@) e do

—ad
o
n -
= | e* AN giziis gy
dx :
g .
T A
= ¥ f e—x’( d)ne!(:c-riy)‘ dx
- dz A
' AY)
- .\\ o
= « \J/
k3 -
— (_,i)ne'ly’ f et a‘i el doe LN
Y A0
— \:w\.\\'

d . ol , 2\,0
— [—g)ret¥ —datixy Y gy
= (—1)" (dy) f e '::\(J

. ‘ O\
— (——ﬁ)ﬂeiy‘(j_y) '\'f(?:tagfm

= i"J2m)pa(y)e kS
Alternatively, let N

1 e - .
D,.(y) = o S (x)eY dz.,
*"\@i

” o 1 9 iy of
= — ' 5&‘ e iR
Then ':Dn(jil"w @ f x_¢ ()
Also, 'integra,t'{ﬁgby parts twice,
O\ -

A\ 1 j? ., i
~’:3:' _— e —— - w)em dw.
A 0,0 = gy |
\ N/ e
Henve’

(D:;(y)_ygq)n(y)Jf‘ (2?‘B+ l)q)n(y)

- T f () — 2o )+ (20-F Do)}V de

= {.
Thus ®,,(x) satisfies the same differential equation: as é,(x); and it is

easily seen that, if e+, (x) is a polynomial, so 18 o' @, (z).
Q6% G
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Hence D, () = ¢, d,(x).
Now . @
1 .
et 5 e~ 3Ty dy
= e __£
din ] " —Wyngizy J
SN e Wyng Y,
(dx) ’ (2m) :!;
: no ot A\
and also (%) et = {(—1)ngn i etz
Oy
3 e\
Hence '\/;: } f g‘—}ﬂ'yﬂe‘fﬂa‘]f dy f— {(—l)"xﬂ-{—...}e‘ix WV
T :“”ﬂ'
and hence . . M'\\
1 1 “? .
. ()88 gy j. Qg I S ye i gley dy
V@) _f Pulye dy vem J ( AN
| e A
Hence €y = .,:n- £

3.9. Fourier transforms, fqurf:li method. Take, for example,
an even function f(z) of LX0,08), and let

~

%% l, fay () da.

Then \\a;= Qg = ... = 0,
Nt =2 [ b da,
x'\’"’ 0 i
E»\i. © oo
and \\\ 2 =2 [ {fa) de.
\ 0

:Ity;Theorenl 56 there is an even function g{x) such that
o”\ Ni” w©
3
N\ s~ 2 [geloyde o= o, L,..);
[H

and

' f (9@} e =§0a§n = f{ fl))? da.

The relation between f anq g is plainly reciprocal,
We now identify g(x) with

. the Fourier cosine transform of =)
Previously obtaineq. _
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We have

J SR () dy = (#I)“J( ) f SRy g f fan(t)cos yt dt
J :

e f (§) f%ﬂ(t) & j “‘ﬂy"‘f—y‘ ay = -1, {(3) j anl8 2,
¢ 0 ’ 0

since (7} belongs to L(0,0} and the y-inﬁegral converges boundedly.
Hence ' _ N\

==}

@ X N _ AN
o= ay = i Z( Wan b)Y S
0 - . ‘1

= lm (”) am f donlt) Bt j( ) f 0,

s0 that f and ¢ are Fourier transforms in th%ﬁimary sense.
Similarly, by taking f(z) odd, we obtam e theory of sine trans-

forms.

N

3. 10 Convergence and summabllity We can now prove
theorems for L2 functions correspondmg to Theorems 3 and 14,

Treorem 58. If f(t) be&angs fo L¥—o0,00), and is of bounded
varigtion tn the neaghbm{ of t = z, then

%{f(m+8)‘+f(a: 0} = T,y im j Fujeres

The tm(lgform of G(u) e—tu (|g] << A), O (lu} > A is

'®) 5 o) = 4(2,”) f gty du = J (%) 3‘%{%@ :

Hence, by Parseval’s formula,

f F@)e-m du = J() J I }S”‘"{x *f) dv.
i}

The result now follows from the theory of Fourier’s single integral
{Theorem 12, case i{a)).
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TraroreM 59.7 If f(2) belongs to L — —o0 ,00), then

fo) = (%}a f ( rul)m)e_mdﬂ’

&
wherever [ @t )+fa—t)—2f@) dé = oh)
]

as b0, and 50 for almost all values of x; and Fourier’s repeated

integral for f(x) holds almost everywhere, if both integrals are mken i
the (C, 1) sense.

L\,
The transform of Gu) = (I_%"’-J)e—fw {ju] <z A), O (Iu .? A), is

glv) = \/(2 ) A ( .!';:'I)e_ixu—auv du == J ( ) f\ll;;;i:(_xg;e)-

Hence by Parseval’s formula

f (1—%)5’(%)3“"5“@ - J() f }( s il M’*""’)d
E -

and, a8 in § 1.16, the result follows from Theorem 13.

The result also holds with f an}l F interchanged, and this gives the
second part of the theorem, ™

We also deduce A0

THuEoREM 60, If \\

J‘{x) =1i dm. 7—— f (t)e—it
where 4 5@8 to L2, and also
Nl

R @) = f (e
AN ’ ‘/(2 )
\wkere X belongs to L then, Y=

For by the above theorem

s (%)I (1* )f(t)e““ dt

i8 equal to $i(z) almost everywhere and by Theorem 14 it is equal to
x(z} almost everywhere

t Plancherel (3).
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3.11. Convergence almost everywhere. If f{t) belongs to L2
the integral ©
J‘ Fityei di

converges in mean; it is also summable (€, 1) almost everywhere, by
Theorem 59, since in this theorem f and ¥ are interchangeable.

Tt is not known whether the integral necessarily converges in the
ordinary sense almost everywhere. As in Theorem 58 it would be easy
to make it converge almost everywhere by imposing extra conditions
. on F(z). The object of the next sections is to state simple additional
conditions on f(x} itself which make the integral converge aJ_m\:’s?t
everywhere.

Trgorem 61.F If f(t) belongs to L¥—co,00), then, (% °
. "
A 8
f F(t)e df = o (logd) \ (3.11.1)
A D
wherever A N\

x) = | |Fa-+y)+ Pla—y)—2B@) dy = o)
0 R =

R

as b 0; and so almost everywherg S )

As in the proof of Theorem§58 ’

| ﬂ”eff‘f.%\i‘i/(%) [ e

Now N>

:t\"’
| o &
E bj.
Iy
an o

ofr

f Flaty)tdy f f PO dt

\

’ rly for the integral over ( —c0, —1). Also

f F(fvw)s“"‘y dy = f {Fla+y)+Fle— y)} -------

= f (Flaty)+ Fa—y)— 2F(x}}s‘““?" dy +0()

1 Plancherel {3).
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if P{z) is finite. The modulus of this integral does not exceed
1fA

A j Pla-+y)+ Fla—y)=2F@) dy + f \P@e+y)+Fle—y)-- 2F(x)|
: : 1A

If x(k) == ofk}, the ﬁJ:st term is o(l), and the second is

Thls proves the theorem. A\

TasoreM 62.F If f(1) and also f(z 10g([t[+2) belong to L2( oo oo}
then A ¢ \

lim J{Zn) )[ f(t)ewdt Fz) (3.11.2)

almost everywhere. - _ - '",z\"
We have :

N
ff(t)e‘“dt f ( 1'”) e 11‘&4\-1\ j tf(tyei= db.

The ﬁrst term tends to .J{2rr)F(x) a}mfjst everywhere by Theorem 59.
Henee it is sufficient to prove tha:t .

f Mf(t)ew dt=o()

almost everywhere \B} Theorem 61

w) j F(ENog{t+2)et dt = o (fogd)

almost Kerywhere If % is a point where this is true, then
A
,J[zf(z)ewf gt [ 20

J TogE+2)
\ )

A
tor) T t dt
' [log(s+2)] ! =log(z+2) "(?J?ﬁogz(“_m—_z)}"sm

do(logx
102(f§2))+ f o) dt = o(),

and t.he theorem follows,

1 Plancherel (3),
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3.12. Inspite of the satisfactory appearance of the above analysis,
it is possible to improve on the result.

TaECREM 63, If f(t) and also f(g}v*log(]¢[+2) belong to LA(—co,0),
then (3.11. 2) holds almost everywhere.t

Alw) =
Lt @)= | Joe=di= | [l e di
: —Mz) -

where M) is any function of such that A(x) < @, and where
w(z,§) = 1 ([f] < M), 0 (|t = Az}), so that wlx,?) = 0 for jt| > @
and every &. J?hen O\
£
}(Il(x)dx_f j de j FDwle, el dt = j f(t)J{iog[]zI+2)}x(¢Id&\

Y 4 "
4 ‘.

h it o o0
e dmmm+mj R
(the ¢-range being really finite). Hence Y
; . RS
[ ®(2) do j [f(m*iogwwzmz [ Ixorede.
Now ’ - :
@ @ i '.ff'j‘ ¢
2 7 ixt J —iyt
E
_ (@, Do, ) o
= fd”Tdy f Tog(l+2) &

— Mz,

Ffefo [ i

“’her&v\(x y) = mm{A(x) A{y)} Wntmg Mz,y) = A, we have, on
integrating by parts twice,

cos(z—y)t sin(E—yA | ~003(x —yA

J Tog@tT2) © T @oyloght2) T J)J(H— +2)log?(A-+2)

Tog(t-+2)+2
(a: y J {1——003[&: y)t}ft_-{—?)ziogs(i-l-m di

= T+ Tyt

T Ihe theoror for series is given by Piessner {2).

-
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say. We now observe that if F(z,y,1) = F( ¥, 2, ), then

¢ £
F{m,y,h(a:,y } d:cdyl < 2 f dx [F{x ¥, Az)} dy.
)

For let, Q be the square 0 e E0Sy < §, and let
= Q) <Ay}, @ = Q) > A}
Then in Ql, Az, %) = Mz), and In @, Az, ) = A(y). Hence
O\
|j’ | Fla, v e )} Myl |

j j Pz, 9, M} dedy + j j e, ) )iy
¢ O
2]@;.:[ [Pz, y,Mz)}] dy 'm:\«

by symmetry O
It follows that : . AN

\\
£ ¢ ¢
ffémwa2fmf

. 0

’%m{(mhy)?«(m)}
Now if 0 2 < ¢,

(z—ylog{A()+-2}

§ S0 £+ 23
J‘ sm{(x y)A(a:)} <\ J‘ sing|. { f du }
‘a — 1
U
Honce O & © = 21-+log ¢+ log{A(z) +-2}1.
¢
J, dzd, ttlogé+logfiz)+ 23
Q ﬂ‘ J y 4J T gty ™ < K@)
\"’Slmﬂa,rly
J; ded dx 1—cos{(x—yA(z)
f ’ yl j {)‘(3)+2}10g”{h(x}—]—2} _“'Z;{;—y)z }dy

f {A(x}+2}10gé{i{;);§} de < K(¢).
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Also
¢ ¢ g
y| < [ st g Lot
J j Ja d“—‘dﬂ’ ! i+ 2)tlogi(t-+2) .[ j {(e—yP
- ~ t{log(£+2)+2}

Hence, for every Az),

¢ 9 @
[ @) de| < K(€) [ {f©}log(Iti+2) .
’ 7w ' \s\
Let $x, T, 7'y = max [ Fooosadt. O
TSMRST ”,;‘

Then ¢(x, T, T'} is the difference between the re&l arts ‘of two

mtegra]s of type @, in which f(f) = 0 for ¢ < T and¥ > T". Hence
A

qua T, ") dz| \

< K() j {f{c)}zlog(z+2) it & Xto) j o2} e

As T'—+oo . M)

bz, T, Ty - dlz, P =) max J. f(t)cosxtdt,

).(iz: }
and $(x, T,T") = 0, smcé\‘f f(t)cosxt di = 0 if A(w) = T. Hencet

qu@ 7 ao] < K© j fyogie-+2)d

It is theny ﬁear that, given €, we can choose a sequence T, Teer
such thate <f>(x T)—>0 except when z lies in a part of the interval
(0, f)«@‘f"\neasure less than ¢. A similar argument applies to the
funétion i(z, T} defined with ‘min’ instead of ‘max’. Since
(t)cosxt dt\ = L[. _[ E

95(=17T) —(z, 7o)

2 < u <, it follows that f f{t)cosxt dt converges for0<z<§
except for & set of measure less than e.

+ By Fatou’s theorem ; Titchmarsh, Theory of Functions, § 10.81.
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Hence ' f f(t)cos 2t dt
L]

exists for almost all #. Similarly, the sine integral converges for
almost all 2. Hence the limit (3.11.2) exists almost everywhere ; since
the limit and limit in mean of a sequence are equal almost every-
where, by Theorem 48 its value is almost everywhere F(x).

Q"
. _ O\
3.13. Theorems on resultants. o\
TaEoREM 64. If f(z) and g(x) belong to L¥H—00,00), then (2.1.9) are
transforms in the sense that (2.1.8) holds Jor all mlueszof z.

For a fixed ¢, the transform of flutt) is \
¢ ati
. 1 - i) )
lim,—— J. Deirn dy = 1im. 0 A drw
o Jmy | Fwt e du Lim G | fede v
e : \S' ~a+t
= K(z)e-=

The result thevefore follows ﬁ-om.Paf,i_‘seval’s formula, Theorem 49.

TitsonEs 65. If f(z) belongs ¥ L(—c0,c0), and g(z) to L{—o0,00),
then (2.1.9) are transforms of the class L2,

_ Bince 7 belongs to Lxand @ is bounded, F@ belongs to L2 The
integral of its bransfofu is

SOo1 o F gieu_1
Y~ F il '
O Aizm) _-[; o) T .
Now{h?.‘hra.nifonn of Glu)e—v—1)/(~—su) is
AN ) iy
Mam, el
\* - .
$ e

. 1 ) g
=lim . { €71 :
= f g e j g(&ere g

o}

= IlmE . g(&) dgfsm(x-f*y-—f)u-sm(y—-f)_u du
u

Oe»og T

x4y

= [00d @>o)
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the - ordinary limit existing by dominated convergence. Hence

(3.13.1) is equal to
’ : o T—Y

s [ [ aee

—w -y

- j fiy) dy fg{uf:&) du

i]

= d —y) d
e f u j =) o O

this inversion being justified by absolute convergence. The, theorem
now follows on differentiafing with respect to x. A
The direct proof that, if f is L? and g is L, then & 4

ha) = j Fga—y) dy O
\\
is L2, follows from the inequalities 9

[h(@)? < f T |g(x—y}dy j lgz—y)| dy

\&

oo

=] 1fumy(x—mdy f l9()] du,

LE

|k(w)|*dw ) 1g(u )i du j ) 1* dy f o=l de

0‘
S = | IfnRd \glu} d
\ f )| y(j glu u)

Tmmmm 66, J f flx) s pos%t%’be even, and L{— 00,00),
trcm\—ﬁmn then F{x) is of the form

Fla) = |

and F(x) is ils

(3.13.2)

where ¢ is L3 —o0,00); and conversely, if F(m) is of this form,
the transform of a function f(x) whick is positive and L.

then it &8
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If f(x) is positive and L, J&) is L2 let G(x) be its transform. Then
G is L* and by Theorem 64 :

f G(1) G (z—1) dt

is the transform of |Jf..ff = f.

Conversely, if (3.13.2) holds, then f is the square of the transform
of ¢, and s0 is positive and L. ' :

TrEOREM 67. If fis L, then F — j

w

Q!
(Ep(x—1) dt, where ¢ twid &
O\
are L*; and conversely, NN

For f = J|f|.lf1sgny. A\

S 3

3.14. Special theorems. TrEorEM 68. [ fbotk flzx) and f’(i}
belong to L2, then both F(z) and 2 F(x) belong LT and conversely.

e AN
Wehave  (fa)p—(fioge = 2 [ i as
0 -~ W

which tends to‘a. limit as z ~>oo.'~’8inc"e {f(x)}? belongs to L, it can-
not tend to a limit othey than 8;and so tends to 0 as x —>c0. Now

| P du = fugnp i | Sy au.
“a AN o
. e x.
‘:3 a ‘r; ED’ the 181"5:&8@(1 side converges in mean square, to N (2m)D(x)
ay. The first teT on the right tends to 0, uniformly in z. The

second term on'thie right tonverges in mean square to —(2m)ixF{z),
at any rate 9¥er a finite interval, Hence .
7"\W

‘~'§“ ‘ Diz) = —izFix),

apc} :ﬁince D(x) belongs to L2 the resnlt follows,

~(Sonversely, if z {z) Is 2, et ¢(x) be its transform, Then

\ 3 o
Hlu) dy ~ _.__1__ et ]
uf V@) _i g d

1
‘*::/(-2;) f Flu)etze gy o

say, F(u) bemg L(-—-w,ce),

Stce F and " are L2 But the first term
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on the right is #f(¥) almost everywhere, and we may take it as the
definition of if(z) everywhere. Then

[ gty u = ifte—

everywhere, and the I‘Eblﬂt follows.
The result can obviously be extended to any number of derivatives.

3.15. TaroreM 69. If flx), F{x) are cosine transforms of L2,
80 are ' 2\

ff j}?(t) d; '\:.\'

\/

and similarly for sine tmnsforms A\
-That the second pair of functions belong to- L?* is. @ theorem of
Hardy. (See Titchmarsh, Theory of Functions, p 336‘)

To prove that they are transforms, we have
(N

ifﬂt}dh“/( ) jF(y)»—-- dy.

The cosine transform of this is

2d fsg;m f F J)___,.‘f?_f dJ
g

%
a3
N\

o du
b

2}11\J'F(y} yf31nxumnxydx

PR Y at
PN\,

: :.\“.
s d F(y)
'S d.

.‘%“, du Y min(u. y) dy

O E) )
\\W F d _;_uJ. eSS dy} I b dy,
V [f () dy Sy

almost everywhere.
The inversion is justified by absolute convergence Infact,if y < #,

ol

|

. . 1fu
sSinzusinzy .o J' uy di + J Ve + f
x2
a

1fy

= y+ylog§+?f = (2+1‘?g§)y’
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and, similarly, if % < y; and the integral

[l [ o)

is convergent if F, belongs to L2,

Y

3.16. Anocther case of Parseval’s formula.
THEOREM 70, If fis L, and g 18 L* and bounded, then

Chap. IIT

N

lim I ( Ix])F(x)G(x)da: f fek(—2) d %

\..t
We have’ N

7 ’.‘

A o

j (1 ngF(x)G(r.) do —

P‘“‘:y

(_l;:'l \)d::c J' flyeret di

= 77 f £ d‘f ( ~ et ds
—-A

,-—;—GO

inverting by uniform convergence As in the proof of Theorem 59,

the inner integral is egual to

PEIRCE ==

This is bounded 11‘
V(Zmg(—

3. 17 "Me!hn transforms
N |

a3

Y f % < o,

THEOREM 71, Let Tf(x) belong o 82 Then

8o = [ foprae (Res) = 4)

e’

con
verges in mean square gyer {k—ic0, k-l—‘iOO) fo 3‘(8} say;

E+im

fwa = f He)o-e ds

bg(u) is bounded, and tends almost everywkhere to ..
x) ’Bhé result therefore follows by deminated convergence.

We shall say that f(z) belongs to £2if
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converges in mean to f(x), in the sense that

lim f [f@)—f(, @) 22?3 dz = 0,

Fi S

ind f @)t e = - f (e it)j2

This foIIows from Plancherel’s theorem by the usual trans-

formation,

TurorEM 72. Let 2*f(x) und xt-%g(x) belong to 8% Then | A

ktim :“.\:\ ")
f f2)gl) do = - f BEG0—s)ds. _\
Ic: it 9. v

This is the corresponding transformation of Theorem@
TuroreM 73. Let o*f(x) and x°*g(x) belong to Q Tken

ki
J=)g(z), f i}(w)@(»s \w) dw

kim

are Mellin transforms in the sense tka&

w & %—Mm
J@)g(@)rs du —‘32—1~m f Fw)H(s—w) dw.

o "’\ Jommfon
Jor all values of . \\”'

This is obtained }ay“replacmg g(x) by glz)»* in the previous
theorem, ..
. x:\“ : . :
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4.1. Transforms of functions of L7, PLANCHEREL’S theorem can
be extended from the exponent 2 to a general exponent p. Through-

out the chapter we write p’ = p/(p—1), and similarly for other-
letters.

TreoreM 741 Let f(z) belong to LP(—c0 ,0), where 1 <p \2

Then, as a —» o, \\

Flz,a) = J(z ; f fltyet dt COF

ol
"
‘~

converges in mean with exponent p'. The menn Zam\é Fx), called the
transform of f(@), satisfies

.‘ 1jip~1)
J1F(m)!1° de << <&r )W 1( j b{(x)P’ dx] (4.1.2)

-0

The Fourier reciprocity holds in t}g;oagnse that

PSR S o L :
(=) 'J(_de J. f(t)_zt_ dt, (4.1.3)
\
f(fé}\ SR "'ﬂ ld.c (4.1.4)
@) dz = -
almost everywkete
Asin ths f?“case we might replace F' (x a) by
N\
™\
Q Flw,a,b) =
D 7 f fe

_Yhere @ o0, b > oo, in any manner.

4,
2 2 The most obvious source of such results is in the formulae
(QL1). ¥k is an int

(2m)ik s 8.42), where eger, the transform of {Fx)}* is formally

$il) = _[f(uk O duy_ .. J j‘(ul}fx Uy — —u;.;_l)'dur

We can deal with, such inte

t Titchmarsh (2) grals by means of the following lemmas. 1

1 Ses Hardy, Littlewood, and Pélya, jne,guazmgq pp. 198-20%
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Luyma a. {(Young’s inequality.). If f(z} and g(x) belong to L¥O-N |
and LHA-# respectively, where A > 0, p > 0, Adp < 1, then

s

< (] ppe-mgpee a) ([ e { opw o)’

Holder’s inequality for three functions is

o0 [-a) & o ﬂ @
[opeae]<( [ o o) { [ e ([ e &
.‘;t\' .
 where at-fy = 1,0 > 0,8 > 0,y > 0. Putting O
iplus = (PRl 1 =], !xl”"‘h’—'IQT&
and y = A, f = p, the result follows. S
Lo f. Lot S(f) = j If(r)[pdﬂ D
If d(x) — ] ft)g(,v:“t) dt,
then Fa-r-wid) < Sﬁ‘rl-—k)(f PRI ()8
Young's inequality gives <\
\V 13—
Pz} < ( f J(g)pi(l—ﬁy}a,_“|1f(1-;m) dt) -
e PN
Hence N
\"\§¢ -
[ lqﬁ(x)l”“%\w dx < [ LF(E) [ j |gla—£) 144+ d X
=@ »\ 3 — —
Q~ | x{sm ) i RV )(9)}’““""“_"‘""’
{ I 1 +1—-:—~p]
= {S Jo(f)}1 i A {31a- .u.)(g)} e )

and the result follows.

Levms y, If f(x) belongs to LAHEk-D, then_ék(x) belongs to L2, and

‘ 7 k-1
_[ {2} de < ( .[ () 22D dx)

1362 H
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Wehave | hile) = [ fbealo—0 d

and, applying the previous lemma repeatedly,
Sy (- ) () < Jja-58) (eI - (D

<3558 G- HOP < o < 3y O,

the result stated. . ~

4.3, Prooff.of Theorem 74 for p = 2k{(2k—1). Suppose first

that f(x) and g{z) belong to L2, and are zero outside a finite interval.
Then 3 -

' 4 ‘.0
< 3

. :/(%?) f gl f(x—uy) dul"‘\\

s PG, R4
Repeating the argument k— 1 time:s,'a;nd making all the functions

equal, we see that the functions {(2)}¥ and (2m)~H+34,(x) are trans-
forms of the class L2, Hence +) = -

*
O
™

3 _ 14 N
f F e < oy i 1) do

satisfies the same conditions, and (e.g. by Theorem 64) its transform

h \\ ' . 1 o« . 2k-1
. o\ - e |
This proyes.{3.1.2) for the special class of functions considered, and

P = 2kf(2k—1),
Now-let f(x) be an

\ . ¥ function of the class LAMeEE-1 The function

~’§21w % f0) i 8 <lz| <b and Ifz)l <=n, and to 0 elsewhere,
»\; | OI'JgS % the spocial class. APPI.Ving the above result to it, and
making 7 > oo, we obtain . T A

_ L (A S W T
;[ | ¥(x, b) 1'“(:::,«.1)|2k.:gt;,;g(_2;?__.1 {U; + f )]f(_x) [2kfc2k—1) dx] .
The right-hand side tends to 0 a5 &>, b= 0. Hence F(x; @) con-

1 The argument is

of Yo nalogous to-that of W. H. Young for Fourier series. For a list

ung's papers ses Zygmund’s bibliography.
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verges in meaﬁ, to F{z) say. We have

j | P{) |2 da = f | Pz, a) 2
] k-1
ilm {25 1)3.:—1( J |f) 22D dﬂf)
e )m( f ) e ndx)
Also '
£ ¢ 1 £ o A
j Fla) dz = lim f Fo,a) de = Im 7o J. de J. fit)ei dt :.\f""?
ef—-l -
= li iy 2
- lim o )ff” J(2 = }\fm
1 d [ eptt 1
0 that F&) = EE;_J.__ 10 gt

= _[ o) dt,

C\}-

the inversion., hémg justified by the bounded convergence of the
w-integral. \b\g[)akmg a — oo, we obtain

~ f'
N\

\M\ \,(2 ¥ JF( )___, u#J.f(t)dt

since (e_‘g“ 1)[ (—tu) belongs to L”‘f@"'l} Hence

—-1',51.;
el —f(w)
«%mx f P "

almost e"e"YWhGre (x > 0). Similarly for z < 0
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4.4. Extension to general p. To extend the theorem to other
values of p we first prove the corresponding theorem for trigono-
mstrical polynomials.

LEmma 3. Fo‘r any given numbers ¢, (—n << m < n)

1

pm j ‘ ‘3"’“" dx <( iﬂ lcmP’)mp_l’. (4.4.1)

We glve fwo proofs the original proof of Young and Hausdorff

and a later one of Hardy and Littlewood. . N\
()1 Let f{t) be a function of L{—w, ), and let O\
'\

= f fe i dt (m = o, j;l ) > ey

Wewrite - J(f ( j e dt) (4.4.3)
S A0
and 8= (Elc f”m’ (4.44)
We have to prove that for any, trlgonometrlca.l polynomial f{t),
Iy <Gl < p < 2). (4.4.5)

If p is of the form 2}’5/(2?5——1) this follows from the argument for
“sums parallel to that ]ust.glven for integrals. If

f(x) 7‘2 € €, glx) = Z Vi €75,

then ) f(:c)g(x) 3 dyeime,
Where o N z cl' ?m-}'
The &makgue of Lemma B i8 therefore
O Siorllo) < SyerHShes@), (4.4
and & in Lemma y, it fo]lows that '
-+ 3 .7
o S < Sje-HOF o @a)
\ But for any trigonometrieal polynomial ¢
8 = Ja). (4.4.8)
Thug 2 2 ¢)

8{1%) = () = (i),
and (4.4.5) with P = 2k{(2k—1) follows,

Toextend it to other valyeg of P we consider maximal polynomlals,
iz, those fop which Jz

is 2 maximum for g given value of 82, and
t Hausdorss (1),
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5 given . Since 88, J¥ are continuons functions with continuous
partial derivatives with respect to the components z, Ym of the
coefficients ¢, = Tyt ¥y, maximal polynomials exist; and we can

Jetermine them by the ordinary method of the differential caloulus,

Let

1t 1 1 ,
s= 3 @A $=g [ 1ora
m=—n T .
Then the condition: for a maximum is o
o #
3xm . a'ym — . C
%_ "% =X {(m=—n,.,1). | O\
Oy OYm O
:_‘;‘_;_ii'lf_ _ ' ' ~‘ M
Hence ;’" ag"‘ =X (m=—n.,n) N
Rad _H;i v
My, Y ~NY;
Nowt O
o , . O
B biZh = plegt i) @b i L pleal?™ om0
Ao " R\

o = FORS
2012 10 =0 SO 2 e
L Fem e,

and similarly 2|f(£) iayi Jff (1)) = fiyie™—f (£,
Hence o )

INT .
S T o
S S (i) = e
Hence aii_}_ gaay_'f'n = % f [f@8) 1P L sgnf(t) e—imd d;.
Hence -

' . |

P I 1) [~ sgn f(t) et dt = Aple,|P 8GN Cm (M= " oy B)-

-7 | (4.4.9)
’rsgnz=ﬁ z #0), aald=0



102 TRANSFORMS OF OTHER: L-CLASSES Chap. IV

To find ), multiply by ¢, and sum. We obtain
21 .[ |f{t)lp,dt = Ap 2 [€ml®s
27 4 .

ie. o oI =S (4.4.10)
Now (4.4.9) gives the first 2n-}-1 Fourier coefficients of the function
[f©)[P - sgnf(#). Hence Bessel's inequality for this function gijres

n

A
2, [ tenl**semon

agl,—,f |f(t)lf'—1sgnﬂtn2dt, N

m=—n ’.\:\
Ap? 1 ] O
. . . _-E)_ -2 o~ T f £)|22 -2 dt’ A \
5 2, Jonlt™t ge | O o
ie. NpSBTY <P O (4.4.11)
From (4.4.10) and (4.4.11) it follows that\ W '
| I _JER, (O
B AN (4.4.12)
» N
for every mazimal polynomial. o\
Leb = 2p"—2,48 " = 2/(3—p).
Then it follows from Holder’&nequality that
mg;:.ﬁl < 85 L, 822, : {4.4.13}
and (4.4.12) and (_4,40\1‘3.)’ give ' '
A\ Jp,)p’ (J ,)p’—l _
SO [ <l (4.4.14)
N\ (S:p A S,

Now suppese that {4.4.5) holds for 2" =r and all polynomials.
Then E’ﬁﬁw from (4,4.14) that it holds for p’ = 31 for maximal
polyiontials, and so @ fortior for all polynomials. We have already
proved it for p’ = 2k. Hence we deduce it in succession for

@) P =k, k+3 k47

) F) 4 $urey
ie. for all rational numbers whose denominators are powers of 2.
Since these nimbers ae ove '

; rywhere dense, the general result now
follows from the continuity of g, and J, as functions of p.

(i)t We a.gacm consider maximal polynomials; but, instead of the
general condition for g maximum of a function of many variables,

T Hardy and Littlewood {1). Bes also F. Riesz {1).



44
e use the theorem that, in Holder’s inequality _
S Gy by < (2 10 PP 020
the case of equality occurs only if the [a,,|P and b, /7" are propor-
tional. Also this proof is independent of the lemmmas of §4.2.
We define 8, and J, a8 before, and write

fn(x) = _ﬁ cmeim' ’ -

For given n and p, let the upper bound of 8,{ Tl d(f) for all f
be denoted by M = M(n) = M, (n); and let the upper bound of
Tl fo 1S (Fn) for all sets of ¢,, be M' = M'(n) = M(n). We first
<how that these bounds exist for every 7. : & \)

We may suppose on grounds of homogeneity that Sy(fy}= 1.
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Then |¢,, [P 3> 1/(2n--1) for some value of m. Hence .\
P _ -m'\i /
: 1 )
et 1) < lepl < 5 [ a8 B
— ) ’::\\:
 end s M) < @t DMEO
Again, Tot ole) = |f (@) sgafile),
and led Y = 1 J. g@fe-smm dx.
: 22 N
Then ” QN |
: 1 &\ ) n .
B =g | S = 3 onn <2 (o7l
-1 : me meTr
< S8 0 < MEF0 = WEEIIT )
& . (4.4.15)
and, dividit}g%y' JLE-D(f,), it follows that M" is finite, and M’ < M.
Again Jfs n o
o..\: “\. hn(x} — 2 [cmlp'—l Sgn cm ei:‘m-l?,
3 =1

we have (by an obvious term-by-term integration)

Sl = 5 J o) de < Ty(Wpthe) < NG (E)
T = s -
aud hence M < M'. Hence in fact M = M. The example f{z) = 1
shows that M > L '

Suppose now that f,(z) is & polynomial for which the maximum M
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of J{f)/Su(f) 18 attained (since it is a continuous funection of the
variables ¢,,, there is such a polynomial). Since M = M’, the extreme
terms of the chain {4.4.15) are then equal, and so all the terms are
equal. The case of Holder’s inequality used is therefore an equality,

and hence 612 = Ay, l? (—n < m < n)),

where A is independent of m. Hence
Sﬁ{fn) = }‘ng(g-n)-

But, since f,, is a maximal polynomial, O
1 1 O
Bplfa) = g wlfn) = 55 T5710) = M2857g,), & N, |
the last step depending on the equality of the 5th and ﬁtllg terms of
(4.4.15). Hence

A= M- SE—vrg,). S
Let r=2"—2, = 2/(3—p) N4
Then by Bessel’s inequality K s N
K R
1 D\
Sio) <z [ loirde = JoBY < 27s1(s)

yL . RPN, A s
= My %{8 g )}o~1 = M ME?T» {8(9,.)} (p Yp _1){&f(p-—n(9n)}p .

Since 3 Iyt < (S 3 1y, 5)

the product of these S-\ﬁérr;ﬂs on the right-hand side does not exceed
Sg(gn)' Henoe \ . 1< M? -
oy Nog I ML M ‘3;7’ R

and so N
We can nQ};e' M>Mg>%.
naw repeat the argument with
8§ =2/ (%%t); and so on indefinitel
valqu of'p tending to I (since ¢
&Qi&ﬁon—d&creasing. But
N/ M) < (2ny- 1y s 1
88 p-> 1, p' > oo, for a fixed n, Hence Myn) =1.

7 replaced by },_ and ¥ by
y. We thus obtain a sequence of
—2 = 2(p’—2), ete.) through which

4.5. We can now prove Theore .
| m 74 by th 2,
Let f(x) belong to L¥, 1 « ¥ the method used in § 3

Then P < 2, and define ¢, and @, (x) as in § 3.2.

WA T
[ @utalpdz =1 |

—mA

n
z a,v e‘iv:t

¥=—n

p' dz < 217)1( i

y= —

1fp--1)
@, 7)
n
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by the above lemma; and

DA (v+LRA Pl ] (w+1)A
ar< | lf(x)lpdx( dm) —ps | e
viA ¥ vl ' ’
A b p—1)
pe | 0 e < 2e( [ P ds)
Y b

Tt follows as in § 3.2 that

@ -2 b

Fipen—Feap 4 < eoel{ [+ [Jirer as) "

- —b a
Hence F(,u) converges in mean as @ —>d, to F(z) say, with oxk
ponent p'. The remainder of the proof is the same as in the gpecial
case where p’ = 2k. o\ 3

Still another proof of Theorem 74 can be obtainedﬁ}o\m & general
theorern of M. Riesz on functional operations. S\eq Zygmund, § 9.2.

4.6. The Parseval formula. . \\ )

Tasormt 75. If fio) and G(z) belong @ L?(—0,0), L <p <2
and F{z) and glz) are their transforms, e (2.1.1) holds.

We know that if é(z) is L?, pﬂfli’g&(x,a) converges in mean to
()} with exponent p’, thent . N ' '

lim | (@) (e () &5 = 0. (48.1)
Now o . B\ : . :

b b : .3
j Pz, a,)G,({,j;la: = ﬁa j G{x) dmjf(t}gm ot
— \\‘ S N

O a b a

R\ f 1(6) dt I ) dor = j Fi(—t.b) dt.

O U(—z;) ) R -

3

Makifig @ - oo, and applying (4.6.1) to the Jeft-hand side, we obtain
b o . ’
| FeGe) de = [ sog(—t.by %
-b —0 :
Making & ->co0, and applying (4.6.1) to the right-hand _aide, we
obtain {2.1.1). _ . o
There are also obvious extensions of Theorems 58-82.

+ Titchmarsh, Theory of Functions, § 1253

Q
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4.7. Theorems on resultants. .

Texorem 76. If flz), Flz) are transforms of L?, L, and g(z),
Glw) of L¥, L2, then (2.1.9) are transforms in the sense that (2.1.8)
holds for all values of .

Proof similar to that of Theorem 4.

Tavorem 77. If f{z), F(x) are transforms of L, L¥', and g(z) is L,
then (2.1.9) are transforms of L?, L¥'.

Proof similar to that of Theorem 65. ~

Tuxorgy 78. Let f(z), F(z) be tmnsforms of Lrp, L¥, andsg(x),
G(z) of I8, I7, wkem

L;__ ~ 1. D a1y
T
hen PO, o j Ttz \y) Q
are transforms of olasses L, LP f@pwtsvd%where
oy O
10+q—1ﬂq

That the résultant of f and g belongs to L? follows from Lemm& 8
of §4.2, with 1—X = 1/p, J—p = 1jg. That FG belongs to L¥
follows at once from Hﬁgdt}r % inequality in the form

{ IFG!P'dé% ([1Fp dx)""”'( [ a1 dx)""ﬂ'
The condltmn\(é 7.1) implies that p<¢,q<p. Suppose that
‘pgg Theﬂ‘p<p ie.p<c2
o ;ﬁ:&“ﬁm 1 < P' < 2. Then F@ has a tra.nsform, the integral
o 75 j P,

Now G(u)(g—ixu_ 1) i b
and, by Theorem Ti( ) belongs to L and to L7, and so to L?;

_[ 9(6) E- {2 } I Gl )"'_fﬁ_,e—wu da,

le.iti
o.1it i3 the tramform of Glu)(e~iex—1) /(—iu). Hence, by Theorem 76,
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J F(u,G(u) = J. J@) dy f_g(ﬁ}d‘*
j f) dy j plu—y) du = j du j fggtu—y) dy.

and the result follows on dlﬂ&mriblatmg
Suppose next that 1 < P < 2. Then

,(2 3 j f(J)g(x—y) dy | ~
has a transform, the integral of whichis .. O
. AN
1 elxﬂ-,__l ,‘. N/
o du jf(y)g(u“ )dy

—a "‘\\.
This is the limit as @ -0 of : X

L j” ¢l g, j fy)g(@) dy

—2

.s.o

_(smce_;]; wdy =1 iPI]ﬂ _L) ~~:;’I’“

=21 ffy)dy j. glu—y)°

@Ko

and by the Parseval foi\@uﬂa (for g, ¢’} the inner integral is equal 0

| u;"} 7 e j Gy dv.

Hence we o@\am
h\

~ - I G(*v)F(*v) dv,

xu__

du,

since G{v) belongs to L? over (0,2)- Hence the result.
fp=1and g=1, then P =1; aee Theorem 41.
herel’s. theorem. Wo shall

4.8. Another extension of Planc
heorem in & different

next obtain a generalization of Plancherel’s t
direction, due to Hardy and Littlewood.§
1 Hardy and Littlewood (1)-
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. Trx=oreM 79. If |f(x)|2272 (g > 2) belongs to L{—c0,0), then F( ),
the transform of f(z), exwts -and belongs to Lt; and

j |F(e)|e dz < K(g) j f(w)lelale? d.

(i) Consider the case g = 4. _

Suppose first that f(z) belongs to L?, and vanishes outside a finite
interval. Then F(x)is L? and bounded, and ,/(2x){F(x)}? is the trans-
form of

#2) = | f)fe—y)dy, Q
which also bel.ongsto L. Hence \ \:'\ ’
2 j P de = | 1¢(x)|*dx
. - ",\"
Now f(z} = |z|-tg(x), where g(z) belongs to L4 Hence
- . N
~ [ 19 g—y) g(y)g(%y) !
SR s = R
B < r lg)* gz —y) 2 j
el < | =T & f !yl*lw' v
O _A T WP ge—y)p d
\\ ' ki ) Tyt e—ylt
Henee e e
|¢(¢,Jsdx\g ;1 F T o) Pge—y)p
i f J =yl
m\ —a [ [ 0Fy gy
QO i £ ey gE W
cd [ [ [lo0)0F |, loe—g)ti—yp
. f llxlitx—yx* ) e

oy

, =4 f o)1 dy j W—’ﬁ—_dmfl j lg(y}* dy.
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Hence [ 1P@)tdz < 4 [ [f@)ta* de.

The proof now follows the usual lines. Let f(z) be any function
such that {f(@)}t=® is L. Approximating to f(z) over (a,b) by a
sequence of functions of the special type, we prove as in § 4.3 that

f \Pla,0)— P, b4 de < A( T+ f )|f'('m);4xw.

Hence F{x,a) converges in mean Wlth exponent 4, and the theorem
follows in the usual way. ~

(it) Tt is possible to prove the theorem when g is any even integer
by an extension of the above method, but, asin the Young-Ha,u‘Stibrff
theorem, the other values remain to be filled in. « M

The simplest procedure is to begin by provmg the, dorresponding
result for series, and we shall quote this from Zyglmmd T The case
we reqmre is that if f(x} has the Fourier coefficients ¢,,, then

f e de < K@) 3, e l“(fw?r+1)q-2
Defining d and ®,,(x) as before, it, follows that
f @, de = f ] 3 e

mq_) S a1

d

Ifv =1, . (,.+\,)j7. ) A
N ¢ N . ’ g Coa- -2
e, |4 < ?ﬁq—l\ ]_f{w)]q dr < )‘? . {f(z) % dz.
A viA
There i 1s\ a\é}nﬂar inequality for v < —2; and
YA '
l%L = f Flayal-Hay2a-1 gy
¢ ’\ . 1] .

$) (f () eaa— d:r) ( J @l ~Dallg-1 dx) o),

‘and similarly for ¢_,. Hence, making X -0, we obtain
3] —a ]
[ 1Pab—Peapa <@ [ +] ) el
% et S

The theorem now follows as in previous cases.
1 Zygmund, T-rigonometﬂ'cal Series, § 0.4
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4.9, Tmsosms 80 If f(z) belongo, fo I (1 < p < 2), then

j )izl ﬂdx K(p) j f) [P de.
. Let g(z) be & funetion of L, va.mshmg outmde 8 ﬁmte interval
(,b), where & > 0. ’I.‘hen it also belongs to Lr. Hence, by Theorem 75,

j Flalgle) de = j f@)e) de.

—m

Also, by Theorem 79, with ¢ = p , ~

|16 s < Ko [t pr-an (O

7'\
Hence

Tremrs] (e ] e 8

K(p}( J ter )" ( [V arras)”

Let  gla) = IF(w}I’”*‘SgnF(x}lxiﬂ‘ﬂ <z <b).

Then _ v..' :

J-lF(a:)lpm zdx<K(p)( j hf{x)[r dz) (I|F(m)]3’3:'*" de)) ,,.
\—'-CO

and hence j [F(mﬂxp—adx < K(p) f f(x) P de.

Making a - O\b — 0, We obtain the desired result for the integral
over (0,0); Sumla.rly for the integral over (—w0,0).

4.10; Q\nother case of the Parseval formula. '
THEOREM 8l. Let flz} be L», and let |F(z)P k7'~ be L, where

<”1<P<2 Then szandgare the transforms offand @, (2.1.1)

’I‘he proof is similar to that of Theorem 75, but now
f {Fle,0)— —F@)}6e) de = f {F (@, a)— F(x)}[x[@-m Gl do

tends to 0 because, by Theorem 80, Flx,a)|x[v-tlp converges in mean

t Hardy and Littlewood (1),
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to F(m)|x]@"2)h’s with exponent p. The proof concludes as before,
but is justified by Theorem 79 instead of Theorem 74.

4.11. Failure of Theorems 75 and 79 for p > 2. That the
Young-Hauadorff theorem fails for p > 2 follows incidentally from
Theorem 80. For, if f(z) belongs to L», not only is | F{x)[? integrable,
but so is | F(x){?}x|?~?; and hence so is o

F@)fefP-t (p<r <) (4.11.1)

Call the class of functions with this property L7, so that LY is a
sub-set of L¥ ~

Tf f(z) belongs to L2 (g > 2} it does not necessarily belong to.Li,
and is therefore not necessarily the transform of a function of. L.

However, we can show by means of examples that even if f(x)
belongs to L§ (g > 2), f(x) is not necessarily the transfoph.oba. func-
tion of the class L#'. Presumably no condition which{ierely states
the existence of an integral involving |f(x)] is a sufficient condition
for f(x) to be the transform of a function of L7, \J. :

Consider the functionf (0 <a < 1, @ <’h)j\”’

: 1 L 9
flz) = A/(g) j {~a—1 os §~P cos abwli )
T, _ N
—0 O\ :"'

17 w1 N
—0 ¢. &\ . =i
1—{¢(§{+¢(x)}- . - _ (4.11.9)

Let \/(27'-)' \X
. (g _'5;)1."’(‘&*1: (3 +§)1,fw +1 L
qb(a:} 2\”\_[ + -+ j = ¢1+¢2+¢’s,
' . ‘\ -0 (.2_'5)1,'{&1—1:‘ (%-i—f)l‘r““’
Wh%j{f.{;"; o(1/x) as ¥ 0. Then
' d sin(zt-+t7%)
b= | gEapEs

and _heré {bi—b —gta+1)-1 jg positive, steadily increasing, and less than
) i i bh—a
b b+1
e < (b/:c) .
;z:(.l_]._gbﬂ) x§

X
t Titehwmarsh (2).
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Hence, by the second mean-valne theorem,
a—20—-1

e — O(E—lx_b-!——l').
In ¢y, (wi*ti— —bis-b)-1 i3 positive and steadily decreasing, and we
obtain the same resulé as for ¢,. Finally

| (ﬁ +§)ﬂ(§+1)_ (Ii _5) 16+1)

~1(b+1. b+l
Il < x z _ O(x )x§) (fxiw)
3l == Bl _at
' A b+l z b1
X \
x
- ._3b+2_ ) ‘\s\
Taking ¢ = @ 2, it follows that, as >, PR\
) 20—§ \ Dy
$la) = O(z¥73).
. . : | . dsm{xt_t—b) ‘..‘:\’\
Agein, 0= | S 0

Now (:ct““-{-bt“‘b)—l increases steadily ﬁ'{m&\O to a maximum of the

form K:c5+1 where K depends on 2 ahdvb only, and then decreases
steadily. Hence the second mea,n-va,iue theorem gives

'f'(-'ﬂl ,_f (xb*‘l)
. 2g-b
Hence ag z > 0 R (a:) == (93‘35“),
and plainly f(x) z\Q(\l) as - 0. Hence, if ¢ is a given number
greater thgn 2, flepbelongs to Lg if b is large enough.
If f(x) werdthe transform of a function F(z) of L¢, we should have

:‘,gl\l"\ ro= [0) % j S0 ) du.

Jf We can insert (4.11.2) for f(u) and invert the order of integration,
\ “We obtain
Flax) = e 0<a<l), 0 {(@>1)

whxrih does not belong to L for a,ny > 1. This gives the Jesired
result

The inversion is justified if we may invert

Cerm

sinzu
f dﬂjt #=leost-5(1—cos ut) df;
0
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and we may if

1 —ro .
}\jm t-c—1cos -0 di J sinzu(l—cosut) . o
Now
o . ; | Mot X l
j %1_9@_%(__;%_) du| = 1‘ j ?}2_3’ o — f sy M‘
A ! pr] Mz—#|
-+
< Llogl—-
== % g z— ts
and the result follows from dominated convergence. \ C ;\~

1.12. Special conditions. In this section we give two sﬁjﬁzéient
conditions of special kinds for f(z) to be the transform pPa 'function
of I7 (1 << p < 2). O

TaeoreM 82.7 Let flx) be even, positive mmgreasmg forz >0,
o) = 0, and let {f@)rar—? (1 <p < 2) ag,zqn& to L(0,00). Then
Fiz) belongs to LP. NV

Sines f(x) in non-increasing, and f(oga.‘;:“i), the integral

%

F@) = @) = A/G’;—)}:‘jwjf(y)cosxy dy

converges for every x > O.zﬁt

Flz) = J (%)j a?f(y:cosxy dy + J (12—1) :rf (Q)WSW dy
w\) Uz
"\:ﬁ’(;);Fz(x)-

By the mgﬁi mean-value theorem
O : . .
Gt = JE) | omenin = JEVEI=E
' iz : :
Hence | |Fa(x)] < 2 J (‘12;) éf (%)'

and f B de < A j {éf(i)}pdx =4 j et i,

+ See Hardy and Littlewood (3).
T .

4382
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which is finite by hypothesm Also

R < J() j Fo) dy,

and we have to prove tha,t thls is L#; or, what is the same thmg that
ao f fo) dy
is I?. We are gwen that f(x) = g(;v)ngi’"l Where g(x) is L®. Hence

—p a —¥p 2p~1 -1 ) dy,
z ff(y} y = o fg{y)y y <z fg(y )

which is L», by a theorem of Hardy f This proves the théorem.

Incidentally it must follow from our hypothems thad; f(x) belongs
to L¥; and in fact, -,

K> [prgp-2d > ﬁ’(x)(lx)p n“\

$d \
f(x) < Ky-tp-tin, .".Q'
el < Kifto)paie

TEROREM 83, FLef f(z) be the mtegml of order (2—p)/p of @ functwn'
$(x) of L». Then F(x) exists and bdongs to L7,

Let | () = J ( ) f (0 sm(:r:t—}—-n-/p) di.

Then, by Theorem, Sa:cz*afﬂ@a(x) converges in mean (p) to g(z) say-
Let G{x) be the coslrﬁ ransfonn of g(z). Then G,{x) belongs to L*"

Also
f”?c{g:)dmz"/(?_r)f?]nx 9(z) do
N\ 0

Q {2\ sinag
AN = lim (ﬂ) Jﬂ o 1= () dx
m x
a

QI a—m

-1im2 sin xy

=lim> | Seids [ §(min(at-+ip) d
o 0

caf F sinaysi -
= lim~ f $(t) de f “"E‘;_xymjg“‘“”/f” dz,

a L) 3 - - D
the inversion being justified by uniform convergence.

1 Bes Titchmarsh, Theory of Punstions, p. 396.
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The inner integral is

211{2@)( —pEet (t<<y), O (t>g;).

Hence
j ) de = s j (y—t)-L4(t) dt = j @) s,

by hypothesls Hence G,(x) = f(x) almosteverywhere, andglx} = (:c)
belongs to L7,

4.13. Lipschitz conditions. In this séction we shall give a cop .
dition of quite a different kind for & function to have a tr&nsf({rm
belonging to certain L-classes. The analysis originated with theo‘tems
of Bernstein and Szasz on Fourier series.t

Trornmy 84. Let f(x) belong to L? (1 < p < 2), wnd z&
f fle ) —fa—R)P d = O(e®) (0,\4::}"@1) (4.13.1)

as h—>0. Then Fl(x) belongs to LE for O
i “ P
Pl = —
prap—1 _ ﬁ Sp-1
¥or o fixed A the transform of f{x—!—k) js e~ F(z). Hence the
transform of f(z+%) —f(:c—h’)\\as a function of x, is —2iginThF(x).
Hence \
- RO e _ 1p-1)
[ i2sinah P e < _K(p){ | PR dx]
o OV N :

R,
§ - < K(phe?'.
Since 13“1???&1 > Awh for © < 1/h, the left-hand side is greater than
’“\ Uk :
A A [ e EE) s
o
1 : _
Hence | @@ de = OE).
’ ' i1 . .
; |
Lot &) = | FP@)F dz.
| ]

1 See Titchmarsh {12).
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Then, ifﬁ <P', ; :
' B’ )
$(f) < ( j [eF (@) da:) ( j dx)l—ﬂfp = O(£1-oB+Biv), -
i 1 _

Hence

¢ ¢ ;
[ 1Py de = [aP4'(e) de = £-FHEHB | 2 P-14(z) de

. e |
- o(gl-ﬂ-awfp)_;_o( [ a-tespstty dx) = O(g-P-s84m),
i
andthlslsboundedas§—>oolf1m,3 aB+Blp < 0,ie. if" D
g>_ P O
T ptap—U R <“}‘:

Similarly for the integral over (—§, —1). Thi..ggéréves the theorem.

A particular case, corrésponding to the original theorem of Bern-
stein, is that if the condition is satisfied\with « > 1/p, then F(z)
belongs to L(0,00), 50 that the Fourier drtegral

| (t}éfd’dt

is absolutely convergent for all va,lues of z.

To show that the rangsfor 8 in the above theorem cannot be
extended, consider the\even function

) = i @>0)
where 0 < w\<z l/p For x> 28
YR —fla— h)| = Zh|f'e+0h) (—1<8<1)

NS < 2Ifa—h)| < 2If (),
sn;[ce | Fx)is posltwe and steadily decreasing. Hence

j = de = ofao [ 42y )
I 2h

= O[kf‘( j ae+lp gy + J‘Px—e dx)} — O(kl—aﬂ).
Also 2
24

f ) ~fla— Ay do OU o hlar) O(#-m).
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The conditions of the theorem are therefore satisfied with o = 1/p—a.
Hence Fix) belongs to LB for B > 1/{(1—a). Butt F(x) ~ Ka2%1 as
3 -»00, 80 that F(x) does not belong to LV1~9), '

In the case a << 1, p = 2 it 15 possible fo put the theorem into a
form in which it is reversible.

TrporEM 85. If f(x) belongs to L?, the conditions

[ it Wfla— e = O (0 <<, (413

-X @,
( [+ | ){F @ de = O(X-2) (X->c0) (41330 N
—_ x N o
are equivalent, _ . ;\
Instead of an inequality we now obtain ™

J. 4sm2xk]F(x)|2dx = I ]f(xwf—h)-f(x—h)]it.ﬂé;i’-
e o v (4.13.4)
Suppose. that (4.13.2) holds. Then (4.13.4) gives,\J '

1k @ '\ .
j [F(r)2de < 4 j sin%ch| Fa)jde = O(t%).

1i2R) .
Hence oD

W

*

@ 2 X 4X &3
[(Fa)de = [+ [+ .. = OF =X+ )= O(X 1),
X x 5.4 A\
and similarly for (—oc0, — X)) -
On the other hand, if {E\\I3.3) holds, then writing

NOHX) = [ (B de,
:t\"' x
X N\&
[ F @ —
D A\
. \ N x
. \ \™ < 2.J‘ O'-2%) dz = O(X3-te).
enco b

X

4 i ) ' ’
[ (@) do = —X¥(X)+2 [ #(a) do

1}

=

o

) b Y L
[ vt (Forae — o | re i)+ of [ + [ e iz
- ;111;3 ) - 1k :
= O{h?*), | '
and (£.13.2) now follows from (4.13.4).

t Ses e.g. Theorems 126-7 below.
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Since, f < 2, '

X e AR 2E y1-38
[ 1P i< { [ o) d) ([ )"
. . N O(X""‘JB)O(Xl“*r&) — O(Xl—mﬂ—}ﬁ)’
it follows again that' F(x} belongs to LB if B > 1f{a-+3), the case
p = 2 of the above theorem. But this last step is, of course, not
reversible. o

4,14, Mellin transforms of the class L?. Let us denote byg”
the class of functions f(x) such that N
. C - o ’\..\
S d O
[ 1w & <. S
Then we have ° | _ ) \\
Tuworuy 88. If F(k-+if) belongs to L? (1 < m<e’2), then its Mellin
transform f(x) exists, and 2%f(x) belongs to LZND :
If 2*f(x) belongs io 87, then the Mellin transform §(s) of flx) exisis,
and F(k-+it) belongs to L¥'. PA\% '
Tagorsy 87. If Flk-Lit) belongsa 1P, and a~*g(x) to £F, then
Etin ™y )

O

1 4 oo
el j %{3)55(1:—'8) ds = jf(m)g(:c) dx.
e L8 °

These are readily,obtained by transformation from Theorems 74
and 75, A\

TaROREM 83\ If ﬁ(k—l—iv), **f(x) are Mellin transforms of L?, & '
and 27%g(z), Gls—k—iv} of L', L7, then (2.1.15) holds.
THEOREM89. If F(k-+iv), a*f(x) are Mellin transforms of LP, 7,

unt{ @&*k“i’*"): v Hg(x) of Le, 8, then (2.1.16) are Mellin lrans-
forisof ', LP.

N\ LpN;)t: It has recently been proved by Zygmund (2) that if f(z) fs
fac:t,or b§n< % the:n (3'1.1‘2) }“_’36_5.8 almost everywhere, no logarithpuo
79, th & reqm?d’ If flz) saﬁsﬁeg the condition of Theorem

s en f(:c)logx 18 L2{}., 03) (a.pply Holder's inequality to the

integral 1 D . B
™ eg:emc’;;’_’ (2%2%)). Hence (3.11.2) holds almost everywhere by
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5.1. Conjugate integrals. FoURIRR’ 8 mtegra.l ‘formula may be
written in the form

Sy = | {at)eos zi+bsinzfyd, - (5.L1)
d , .
where . o . o)
=1 f fuyeosutdu,  bO)= j fusinut du.
_ 7 .m ' N\
- (5.L2N\"
The integral in (5.1.1) is, formally, the hmitasy—~0of .\”.\'
J.- {alt)cos xt-+b(t)sinztje ¥ db = Ulx,y) \‘ (3.1;3)
b O
say; and this is the real part of ' s \
I {a()—ib(t)}e™ dt = (D(z\) \\ (5.1.4)
_ d
say, where z = @-1Y. . WV
The imaginary part of ®(z) is \
— f {b(t)eos wt~a(t)smxt}e“y‘ dt = Vim, y) {6.1.5)
say. Writing —V{z, 0) S}g@:} we obtain
g(:ﬂ}%—w‘j {b{t)coswt——a(t)sinxt} dt (5.1.6)
\\“ : .
\:w‘ = f dt J sin(u—x)tf () du. - (8.19)

A

The ﬁ{tegral {5.1.7) is called the allied integral of Fouriet’s mt,egra.l
It\q ebtained formally from (5.1. 1) by replacing @ by & and b by —a-

Repeating the process, we return to minus the original integral.
The relation between f(x} and g{x) is thus skew-reciprocal, ie.
reciprocal apart from a minus sign.

Again, we have formally

aty = L1 (P@)+F(— - :._L-_Fz;-F?t)..
0= gmlPorFe 0= g e
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Hence

o . . 1 o -
o0) = g | (FOO— P Dheonat &t o f {PO)+ F(—t)sinat &t

= < J(l%){ f F)e-t= df — fF(*é)em dt]

J. F{t)sgnte“m dt.

Thus G(t) = —iF(t)sgni. (5.1£8)
If f(z) is even, b{t) = 0, and g(x) is minus the sine transform e( the
cosine transform of f(z); similarly, if f{z) is odd, g(x) is the cosine
transform of the sine transform of flx).
Again, we have formally

el
27
< 3

A @ Mj\g,’
§(2) = Tim > f dt f sin(u—z)tf(u)
A= T J e x'\\"‘

AW

— hm-l- 'l—cos)t(u,—:h:g}.(u) du
A—veo T u—’q_’,."
— ]Jm %—-CQSM

Ao T

{fla+t)—fle—t}} di.

If f(x) is & sufﬁclenﬂgeg‘ham function, the part involving cosAé will
tend to 0 as A = we shall have

g(x) ff(-?“) —fr=1) g, . (5.1.9)

a-ndaim\larly f@) = j 9(“’+‘) 9@~ 4. (5.1.10)

\’Bhe reciprocity expressed by (5.1.9), (5.1.10) was first noticed by

Hilbert, and the two functions so connected are called Hilbert
transforms.

Equivalent formulae are

o) =P J B goy--1lr f 90 g,

5.1.11)
where P denotes o principal value ati—z. (
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Simple pairs of conjugate functions f(x), g(x}, are
10<z<a) 0 elsewhere, l}og atz ,
T oo |a—a
1 z
1 —1-—:.352’ __].-E-—SE‘.E’
Ccos ¥, . —ﬂin x, -

and any number of such examples can be written down by starting
with a suitable analytic function ®(2). Examples from Chapter VI

are 1=, (1), —sgnzle~H,(lx])
from (7.1.11) and (7.2.8); .
sgna |zl (=]}, — 2T, (=[) R\
from (7.11.2) and (7.11.3); and o R
VLN _Pﬂgnxi@/ﬂ)Ku(?JIxl)+-1,’$(2{/lx])}

from (7.11.2), with v = 0 and x = 1{uja-t-afu), and :(.&2.’8).

5.2. Conditions which would justify the above formalities directly
would be extremely complicated. Actually thesimplest rigorous .
argument gives the reciprocity in a slightly différent form.

TaeorsM 90.7 Let f(z) belong to L(—&oye0).. Then the formule

glx) = —%dix f :ﬂiaia"g 1%\ dt (5.2.1)

defines almost everywhere & fq@ﬁ'—on g(x), also belonging to LH—00, ).

The reciprocal formule ¢\ o
fleps T2 [ oo
NS o de
X, —c

1—%'& (529

- tlso holds axmo«?!ﬁ‘évérywhere; and
:"\.‘. - o
N [ ey de = | ot de. (5.23)

I£a6 pould perform the differentiations under the integral signs,
we should obtain the reciprocity in the form already given. We
shall see later that this is possible; but we begin with the form to
which the theory of Fourier transforms leads directly.

Let F(z) be the Fourier transform of fla), Glz) = —iF{x)sgn,
and g{z} the transform of G(z). Then :

fm lg(@)? dw = f (G () |2 da = f | P(2){? do = flzf(_x)i*dw-

i Titchmarsh (5)-
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d Fe)e Ly,

: e—m 1 -1.
Ty YT e ) vl

«J(2ar) j —iwji J (i) al‘ co_é(x_ﬁit%y_—-‘eosug o

= J(E)hm_ f “08(‘”+“}y_“°3“9d Q
| 30 y A

“alu ' 2’ v/
=J(g)hm j ﬁ:J(:)log
1) 520 AN, ARy
Sletul N

Hence Parseval’s formula gives® N\

jF{y) %ﬁdy j flulog

= Idu,

and (5.2.1) fo]lov(s, “The relation between F and &, and so between
fand g, is skew-recipracal, so that (5.2.2) also foﬂows

5.3. :Qfmm 91+ Let f(x) belong to L¥—c0,0). Then the formula

«S -
N

o) fle+t)=fle=1 5.3
QO g(x) = J. dt {5.3.1)

defines almost everywhere o Function g(x) also of L¥—cw0,0). Tke
reciprocal formula

fl@) = _% f _E(L-ngg{x—‘)dt (6.3.2)

1 The analogue for series is dus o Plassner {1). See also Hardy (14).
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also holds almost everywhere; and |
f {fle)y dz = J' fpde. (5.3.3)

The Junctions g(x) of Theorems 90 and 91 are equwalem
The integrals (5.1. 2) defining a(?) and b{f) emst. mthe mean-§quare

wonse: and at)—ib() = J (;)F (=0

LetH(ﬂ—e‘“(t>0), (¢<0). Then O

) = «%J?mz““W%WPa

Hence Parseval’'s formula, in the form

j F—HH() dt = j f(t)h{@z '
applied to (5.1.4) gives \ : .
o@) = f f (‘L a I(z) = 0). (5.3.4)
Taking real and 1mag1na1'y par% separately, we obtain |
b=t [t
\vmm ——j“ e (539)

DEﬁJlé g &nd @G as in § 5.2, the integrals being now mean-squaro.
Th@'ﬂsWe also have

\‘1’(33 = A/( ) J F(—t) et dt = —@J(%) J?.G.(-*t) et di
= —iJ() j G(_t)H(t) dt = %J() fg(t)k(#)dt

1 ggl- S (53T
T .[ t—'-zdt' _ o

—

el
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Hence . t
Ulz,y) = = x}j‘;ygg(n i, (5.3.8)
Y [ _g(g)_ e 53
Vg = —— g (5.3.9)

By the theory of Cauchy’s singular integral, § 1.17, Ulz, y) - f(x)
a8 y = O for almost all values of z, and V(z,y) > —g(x) for almost all
values of z. 'We now use the following theorem.

Taronem 92. Let f(x) be any function such that f(x) belongs to
L(9,1), and 27f(z) fo L(1,00).- Let Viz,y) be defined by (5.3. 6) T,Zzen

{V(a: - f w dt} (5 3.10)

 for almost all values of . ' \\
We know that ’

] . . A

wly) = j fle+t)—fle— L& o ty)
for almost all values of z. Let z be a ant where this holds. We have
oL Tt

== f —W{f(xﬁ)hf(m—%)}dw

[ fet)—fe—t) g f fetn—fe—)
\ ;{_ f CEE T - AT R d
eay. é‘,%?\-w B

j \fe-+i)—fe—t)] &t = o(1),

W < ¥ s J‘ @) —flw—1)]
Byt

o) T, 42 [ 304y
[(¢z+yg)t]y+; J (ng?)z%—s w(t) &

dt

ar“‘:
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1
gff _‘,‘Ll) o [ 3849
<% 1+yﬂ+°{y ,[ e
¥

1fy
3us-}-1

— 2 P =
= Oy )-1—0{ j (u"‘-i—l)zu_du} o(1),

i .
~ and plainly J5 = o{1). Hence the result. _ '
- Qnce Vix,y)—> —glz) almost everywhere, (5.3.1) follows from
(5.3.10). The relation between f and g being skew-reciprocal, (5.3.2)~
also follows; and (5.3.3) holds as before. - )
¢

5.4. In this section we shall show that the same set of férmulae

may be obtained from a different source. We can take an\dnalytic
funetion ®(z) satisfying certain conditions as the origingl function.

TarorEM 93. Let ®{z) be an analylic function, feg"ular fory >0,

and let - AN
[ ety dess”
exist for every positive ¥, and be bag{,@dgd'. Then, as y—> 0, O(z+iy)
converges in mean to a funchion (z), and also O(x-iy) > D) Jor

amost all . Fory >0

D(z) = AN Q) 7 (u real).
\{gm U—E

If 0) = Ut o) 14¥te, ), @(a) = fla)—igl@), the functions Uy V..
f, and g are conmested by the formulae of the previous section, and 3t
warticular f amd g are conjugate. '

Wo ﬁ:rgt'};r“ove the following

’I:E.:Mz(. Let D(z) be analytic, and let
A\, _ w )

[ @@t >N

exist and be bounded for 4, < y < Yp. Then, 8%~ +o0, D{z+iy)} > 0
uniformly for y, 5 < y < yo—9 _
Let 4,45 < y <C yo—9. Then, 0 <p <3

om
1 Q(w) 1 idy dob.
@) 23 w—z dw Zm E+e

lw—3l=p 0
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Hence 2m

5 .
w00 = - [ pdo | Otpet)ds.
1] L]

2m
oo o™

.y, ] Ip
k@) [ o f @ (utiv)|? d‘u}
Wi )
z+d N\
Now - | fs B (u-iv) P du '\:\
&= :
iz bounded for ¥, < v < ¢, and tends to 0 as ¥ — 0, for every 2.
Hence the right-hand side tends to 0, and the result foﬂoﬁrs
To prove the theorem, let W\‘

—ile
$at9) = 4(2)[ {)e\ s

For each y this ¢onverges in mean, to g6(t‘ JYsay, as @ —> . Consxder,
however, the mtegra.l J. B A

taken round the rectangle with' ée;fners at tatiyy, ta-tiy, where
0 << 43 << ¢a. The mt.egml along the right-hend side is

| 3
1
PO < 5 j

I@(a%—sy}l&i‘&“ﬂﬂ)z dy = w-““ J ®la|iy)eY dy,

and, by the lemma this tends to 0 as ¢ —co, for fixed y, and ¥
Similarly, the\mtegra,l along the left-hand side tends to 0. Hence,

a.sa—»oe\

3
RN j Ofartigyle et de — | Qf-igyle-tesind do > 0,

\\ v = —~a
€ Ealt, Y1) — eV (1, y15) > 0.
EZI;:G i;he mean-square limit of this sequence over any finite interval
is also 0, i.e.
g, 1) = g, yy)
for almost all &. We may therefore write
‘ﬁ(ta Y= 34v¢(t}s .
$(t) being mdependent of ¥ (e.g. by putting $(f) = ¢'¢(t, 1}).
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Also, by Parseval’s theorem,
[ popemdi= [ O@+ip)?ds.
Since this is bounded as y — oo, we must have ¢(f) é 0 for r,'<' 0; fdr'

f p(t) |2 dt < e~ j Ib(8) |2 wdt<xe—zay_,0

-

so that J’ 1B} Edt = 0.
. Since it is also bounded as ¥ — 0, ¢(f) belongs o L*(O oo) (™ \ '
Also, $(f)(e~r—ef) is the transform of (D(:c-i—iyl}—@{x‘-i-ayz)
Hence _ N
. ~\\

j O+ i) — Do+ iya) [* de = j 8) 2ot di,

— “\\"
Whlch tends to 0 as y; = 0, ya—> 0. Henoe‘tb‘(:c-l—iy) converges m :

mean ag y = 0, to O(x) say. _
. Next, ify > 0, (p(}__l_ gﬂd‘”'

the integral being taken round the reetangle Lativ, :I:a—;—wg,
“where @ > jv| and v, < y<{'w,. As before, the integrals along the. .
right- and left-hand s1dée\\tend to 0 as @ > 00, and we obtain |

(I)u—}- v) ¢(u+w2)
fD()h—ef i) 2mf du.

2mi” u-[—wl-z u-|—w,——z
But QY - .
" QY -
B+ ivy) v . PP
\£: ’u—[—wg—fzd g j id)(u—i—i‘vz”s &u :' (u-_ﬂ_x)’-i—(vs.-‘y)g
K
”2_?1,

whwh tends to 0 as v, > co. Hence

o= | dering, o

1
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and, making »; >0,

1 [ oW
) == | ., du. (5.4.2)
The integral with z replaced by Z is zero. Putting G(u) = flu)—iglu),
Dz} = Ule, y)+iV(x,g), we obtain the formulae of the previous
gections; and it follows from the theory of Cauchy’s singular integral,

and (5.3.5) and (6.3.9), that @(2) > d(z) for almost all .

. TagoreM 94. If $(2) is regular and bounded for y > 0, then $(2)
tends o o Limit as y — 0 for almost all z. ~

For y{z)/{z-+-) satisfies the conditions of the above theorep{,s g,nd
80 tends to a limit almost everywhere. AN
Notice also that, in the above theorem, ¢() is the transtorm of
d(x); for, if x(t) is the transform of ¥z}, asy—> 0, \ 3
. N

e =)

[ xo-ge Pt = i l(b{x)—d»(xi—gy’) € dix > 0,
— . e .:'\ 3
@ RS
| | 1xi—g(0) dg=b.
Hence x{t) = 4(%). -~ R\

R . "0

5.5, We also deduce

THEOREM 95. Altematj&g“necessary and sufficient conditions that o
complez B(z) of L¥—ga,v0) should be the limit as z > of an analytic
O() such that > o

W27 [ Wt <K
are o -

' : .
i) Q(ﬁ= fl#)—ig(x), where f and g are conjugate functions of the
clasgol®;

M\;(’i}).é(m)’ the tmmfm Of (D{x), 8 wull fo.r x < 0.

The necessity and sufficiency of (i) follows at once from the ahove
theorems, :
The necessity of (ii) has been proved in the course of the previous

I’]).‘I;(Jf. Conversely, let ¢(x) = 0 for z < 0. Let ® be its transform.
en 4

Pli) = 1im,

1 g :
\f[2'-'f) J‘ e (x) da.
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o

Let O(u-tiv) = 4/(2 ) girlerigix) e (v > 0).
Then ®(u--4v) is analytic for v > 6, and
[ i du= [ e=iga)* dr < [ idla)l de.
— ] [

Hence, by the above theorem, ®(n-+iv) converges in mean, and also
almost everywhere, to F(u} say; and

iy o0 ’
1 [ei=U—1 '

D) du = - | o) de AL
E)J‘ ‘\/(2”) j‘ L 7 \,,'\

6w{U+w)_, "
— tim j "L gy iy )
v—0 z\l'{{2'ﬂ'} : \

= hm I@(u—{—w) du = j\‘l"(u) du.

Hence Yiu) = q)(u)
The result also follows from the ‘ﬁmnaform formulae; for, if @
satisfies the given conditions, @, f ai;d g are related as in § 5.1, and

o) = Lim. 4‘(;”) f () —igtulle du

— F(X ViG(—2) =0 (& <0)

by (5.1.8). Lonversely;let H{x) = - oforz < 0. Let ©(u) = hi (u)—ig(w),
let a{z) and b{azkbs “defined as before in terms of f, and similarty
+(z) and ﬁ dnterms of g. Then

Naw)+ib(r)—i{u(z) g} =0 @< 0
i'“'m;"\'f Y ale) = —B@), bp)=ole)  @<O
H"Q&'ﬁ is the conjugate of f, and the sufficiency of the condition
follows from condition (i}.

5.6. Tumormm 06. A necessary and sufficient condition that ©(z)
should be the limit as y—>0of an analytic D(z) such that

j (i) ? da = 0(e)

s that d(z) = 0 for = < —F.

1362
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If k is the least number such that $(x) = 0 for v < —k, then
lim Hlog J' B(-tiy) [ de = 2.
ol -

Suppose that ®(z) satisfies the given conditions. Let
O(z) = ¥ (z).

Then f[‘i’(a:—]'—iy)[zdx — ekvj O(--ig)|? d = O(1).

Henee ¥(2) > ¥(z) almost everywhere, and, if ¢{(x) is the transférm

of ¥(z), ¥(x) = 0 for » < 0 Now '\:.\.
N
© lw) = Lim, o \1[2 ) j (D(u)g-—mu dat ":f”.}‘:
\"
iz k)u d L “E‘}C)
-111114(%) J P (u)et=t O :,‘b{x

\
Hence ¢(z) = 0 for < -—-k and in new\af the ahove theorem the

argument; is reversible. This proves tiie) Birst part.
Agam, since (D(a:-{-sy) is the traggfprm of e~wd{u),

f o= | [ el du — | eswwigils .

—&

This is "‘% gzkyj’ |(a) |2 du;
W 4
. .
and, if w() = | ¢l(w)* du,
\j :( —k+5) f 2oy dy,
it equalg™ 2y e~2ugy () dog 3> s -
&{ —k+8

\ — oS —T)ed-dv,
m;{,é,nce the second part.

5.7. For a function having a mean value in a finite strip the
corresponding theorem is as follows,

THEOREM 87. Let (z) be an analytic fumtwn regular f or
?/1 <Y<

f [B(o+-ip)(2 da
exials and 15 bounded f(}r W<y <y

and such that
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Then the boundary functions O{x--iy,) ond Oz+iy,) exist as mean-
square Limits, and also almost everywhere as ordinary limits of ®(z4-iy).
Foryp <y <Ya

1 Qutin) g, 1T Slutig)
=L [ S, L o)
() 2mi ) utiy,—2 Y om f U-igyy—2 du.
The transform of ®(x+-iy) is of the form e~¥i(2), w}wre.e-‘%(t) belongs
to L* for 4y < Y < Ya

This is an obvious consequence of the above analysis, except
perhaps for the existence of the limit of ®(x-+iy) almost everywhere
as y = ¥, OT ¥, However, the previous analysis shows that (\)

'\
\

Q!

Dlu-+1yy) du (.,’}‘.
utiyy—2 ,

“w <
tends to a limit almost everywhere as y — y, from &beve; and

@ , NY;
(P_(.%,-{LM du ¢! l.\
U1 —2 \ x\

i8 regular for all ¥ < 43, and so tend;!f’,,t(; g limit everywhere as
y—>y,. Similarly for the case y —> yahd '

5.8. TaporeM 98. Let f(x) belong to L¥—oo;0). Then -

| f@) &S @)+ @),

where f,(x} belongs to L%léo,oo), and is the mean-square limit of an:
analytic function f , (2)regular for I(z) > O; and similarly f(x) is the
mean-square limit of f_(z), regular for X{z) < 0. o

Let P(z) be the'transform of f(z), and

'1\\““’ 1 [

fil) = iz _ 1 | paeiodu

(2) =) J. Flue-i=du,  f_(2) X 2’-’)_:_[ (u)e

mJ

Pla,i;}[y 7.(z) and f_(z) ave regular for y > 0,y << 0, respectively. The
test of the theorem follows as in § 5.4

TrrOREM 99. Let f{x) belong to L*0,00). Then
1) = fo@) ko) 3
where f () belongs to L2(0,c0), and is the mean-squaré limat as
- 82> +-0 of an analytic function fp(z), regular for argz = 0; and
similorly f_\(x) is the mean-square limit of fiy(2), regular for axgz < 0.
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This may be deduced from the previous theorem by putting z (of
the present theorem) = ¢; or deduced directly from Mellin trans-
forms. In fact

i Tiw :
. _ 1
fuanl) = __121:-_1, J. Flaretds, foled) = e J 3(8);“ ds.
J—im :

5.9. TarorEx 1001. If f(%) belongs to L{—o0,0), then
j‘” flan—fle=1) 4
]

O\

| PR\
We may suppose without 1dss of generality that f(x)“ 2.0: Define
Ulz,y) and V(z,y) by (5.3.5), (5.3.6), and let

exisis for almost all values of ». '

o) = Ve y+iVen = - | L8Ny > 0.

. R\
From its definition it is clear that U{x, y) = 0.
Let Y(z) = e = - UBW—Viza),

Sinee Uiz, y) > 0, [¥(2)| < 1. Herioe, as y > 0, ¥(2) tends to a finite
limit for almost all z (Theorem-94); and this limit can be 0 in a set
of measure 0 only, since U, ) tends to the finite Yimit f{x) almost
everywhere. Hence V() bénds to a finite non-zero limit almost
everywhers. Hence jllbs) tends to » finite limit almost everywhere.

Hence V(z,y) tend$\td a finite limit almost everywhere. The result
then follows frgtn Theorem 92.

72\ o
5.10. ert transforms of the class L7,

THrOEEM 101, Let f(z) belong to L(—co,00), where p > 1. Then
the fofpila

O glz) = % J‘ -@j“)_:ﬂ”;‘) it (5100

defines almost everywhere a funetion g(z), also belonging io L#{—00,%)-
The reciprocal formula . .
fle) = — X [ @j“w dt (5.10.2)

3

—0

+ Plessner {1). I believe that this version of the argument is due to Little-
woad.
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also holds almost everywhere; and _
[ lo@)P do < M3 [ |f(@) da, (5.10.3)

where M, depends on p only. :
This is M. Riesz's extensionT of Theorem 91. There are three cases.
@) Let p be an even integer. Let '

00 = & jf‘” it = Uy, )+ W5y) (> 0

Consider the integral J. (@)} de

taken along the straight line from —E-+iy to R-}-iy, and rounds.the
semicircle above it. For a fixed g, @, (z) = O(1f|z]} as, ]z}-mo
Hence, making R -» co, we obtain

[ @uatiy)p do =0,
e } ) x..\\.3
ie. [RUATALL o'.x\

4 i
4 2\Y

00

Expanding the integrand by the bmomml theorem, and ta.kmg the
real part,

[ (=) ifg-zvzirﬁ) V}a-*vz—...:t vz} e =
_ \\’ ) .
(2) .[ VE-2U2 do +...+ f Uz da.

'/

Hence f £ dx

e Tt e[
-w}.: "o e
wr@,g.} y X — (i V2 da:) / U e dw)

it follows that i
X»? g ( )XP—2+( )Xp—4+ A1,
Hence X does not exceed the greatest posltwe root of the equation
Xu(g)zrr—zﬂ...—; =0,

+ M. Riesz (1), (2). For anoiher moethod see Titchmarsh (7).
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and so . X< M,
where M, depends on p only; ie.

ngdngg fvgdx.

Now ;; _ [ )
e y ()
LEUEEIN= &< L g
s o -1 £\
yr i) d_
Galz, P < 5 f mdt[ f (t-x)2+y2} O
_y [ e,
o — 2 7.\
- , " « ) R dx
j 1A dxg;i e dt _j\m
= T @) dt, o" (5.10.4)
Hence | Odeyie da< Mz j’o (fey dt.
Making a — o, ’ p,\
a .\..,;v“, ' ‘JT__:D (t—$)2+y2 3

and, mﬂ'kmg\if\; 0, V(,y) > —g{x) almost everywhere, by Theorems
92 and JQQ’":R thercfore follows from (5.10.5) and Fatou’s theorem
tha.t.@,;lo.:i) holds. (See Titchmarsh, Theory of Functions, § 10.81.)

w\@j ‘Suppose next that p is not an integer. We may suppose

“without loss of generality that fit) 2 0. Then U{z,y) > 0, and
Ufz,9) > 0fory >0, 0 > .

Some care is now needed in the definition of pth powers. Let
(U+iV)p = ghvloe0t+vn1dp arctan(v/v),

where —fur < aretan(V/U) < 4 for U > 0. Making U -0, We
obtain

GVP = |[Vpefer (¥ » 0),  |Vipe-tior (V < 0).
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With these definitions we have
U-ri¥F
2p-t dz[
V 1
< pU(IHVEERE < p P-D(TP Ultf!p—l).
Applying this to U,, V,, we obtain

i P (i < K| [ vpdot | Ol

(AT P— (VP = p}

But, as before, J. {Up iV p de = 0,

.Y

= leospr] | ai? dz. O

7
S

[ mpad >R | @ de

Hence - . _ m\{ N
feosdpm| | V7 de < Ky [ Uzdz+ K, [ Gl da,
e — )
9,

and the proof of (5.10.1) and (5.10.3) can now ‘he‘ completed as in the
previous case. ’

The above proof fails if p is an odd mteger Leaving this case
agide for the moment, we next prové {5.10.2) in the above cases.

We have

| Uz, y)"—f(x)ip Ql .[ f(‘-l;%f.@dgk

t”—t—y

Kii

¥ f’ (2 =fa) 4

X

\ o
- Yy dt Lx)— pdzx.
j i\w: D—f@i do < ¥ j e j 42—

Thb\uiner integral (see Titchmarsh, Theory of Functions, p. 397,
exs. 17-19) is bounded for all ¢, and tends o 0 with t; hence the
right-hand side is less than

wfm 3+€(3)JJ

dt
AL < K,¥ JA -5*]“5(3)?? J. Pyt
8

< Kp y{é+ '2"'75(8)3
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which tends to 0 by choosing first 8 and then y. Hence for any p
lim | |Ufe,y)—f@)l? do = 0.
$=0 <

Also, by (5.10.4),

[ WO e < (1 +f)lft)ii°dt—>o

-

a8 ¢ — o0, uniformly with respect to y. Hence

j Ve, 9)—f(@)|? de > 0 (510" 9

as @ — 0, ¥ -> 0, in any manner. S
Again, by the calculus of residues,

= f 2Ot~ o rin G >b)

AN
and, taking jmaginary parts, ‘.'\’ O

= f E S S

Hence the Hilbert transform oft U (a:, y) is —V (z,y), and it follows
from (5.10.3) that, for the values of p already dealt with,

flV(x,y)m&Ilﬁ<K j (2, ) —fle)|? dee.  (5.10.7)

Combining (5. 19, Q) and (8.10.7), it follows that
o [ sy
:1,:“ alZ)— (x}—w,g(a:)}li’ dz 0
\

a8 y #0, @ — 0, in any manner.
»N"\w by the caleulus of residues

(I)u(z) y
It j z:},:;; dz = @ f¢+in) (y < 7).
Making & — w0, y > 0, it follows that

f(x) .
2m x—-g_zﬂ? dz = B{g+in),

—a
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1 Fo— .
and hence 5 J. E_%;} dz = 39(¢+-in).

—0

T&kjﬂg real Pﬂ.-l'tﬁ,

1 Tr—
- L (}:—@Ei‘_ﬂég(m) dx = —Ué, 4}

Making » — 0, the left-hand side tends almost everywhere to the

Hilbert transform of g(z), by Theorem 92; and the right-hand

gide {Cauchy’s singular integral) tends almost everywhere to —f(z}.

This proves (5.10.2).

(i) To prove the case where p is an odd integer, we shall pr’@;’e
that if the theorem holds for any p it also holds for 2p. Since it
holds when p is half an odd integer, it will follow that it hiolds when
pis an odd integer. £ 0

Applying the calculus of residues as before, butinow to {@,(2)},

we obtain \

1, [ (@ulet P g, e
P f RTE U 4z = O 00Y 0> 0)
i.e. - ,"'l “

1 o 2 172 . - :,:" 3 ‘ .

L[ Ul 20k gy — uay)—Valen) + 2069 D)

Taking imaginary parts, it':?bllows that the Hilbert transform of
U2-V2is —2U,V, Let'ix) be the transform of Us and x(x) that
fy2 £ )

Q V“. Then Q\ "g[‘(w}'—X(x) — _2U3KA'

Heo @)l < 2P +2 100
M@' e < 2 f Wiw)p de +2% [ ULV 4.

) w

sa)” [ iompa<(] T ds [ e da)

—_— —_

and, by the fundamental inequality (5.10.3) (for ),

[ W e <K, [ 1004

[ wm <K, [ e da.

—g
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Altogether .
j 1V|ﬁpdx<1(p j |Ugﬁpdx+1(p(j U, |2 da f ]V[ﬂﬁdx)

The result for 2p now follows as in the previous cases. This completes
the proof. :

5.11. TaEoREM 102.7 Let f(z) and g{x) be Hilbert iransforms of the
class L2, and h(z) and k{(x) Hilbert transforms of the class L¥', where
9" =p/(p—1). Then

[+r]

J‘ flath(z) de = _[ g(x)k{x) dz. (5.11.1)
—a —m 2\ AN
Ifp =2, p' = 2, and (5.3.3) gives O

[ eorih@ya = [ go ke dos 611
o oy \‘

and the result follows in the usual way. ’

In’ the general case, define U(z,y), V (%9} as before, and let
Bz, 4, Qu(z,4) be the corresponding funcbmns for hand k. We have
seen that the Hilbert transform of U 1™ —-V and similarly that of
P, i8 —@;. Since thess functlons belqng to L3,

fU(x, )&(x,y)dxu f (2, 9)0y(z, ) dz. (5.11.3)

Ma*klng“"’w y-—=>0, b—xoo ¥ - 0, U, and V, converge in mean to
fand ~9 with BXPOQth jp, and F, and ¢, converge in mean to and
—k, with exponemt, p". Hence the result.

Exawrrs. 148 k(x)_1/(m~—a)(!x—a[>3),0(|m—a| 8). Then

ki) = _m:]’ Ma) o 1
7 ™ f i = f o ey

AN 1 et d—g
O _ Tog| 402
\Hence © (@ —2x) Bla—s—a
flo+2)—fla—=)
D TN e — a—}-S — d’x
J ;o f i
= | ot+ajog3t “ & sy

—ad

T M. Riesz (1), {2).
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We ean use (5.11.1) to give an alternative proof of the case of
Theorem 101 where p is an odd integer.

Let h{z), k{x) be transforms of L#. 8ince the theorem has been
proved for p’, on making b -0, y' -0 in {5.11.3} we obtain

j? U, y)hiz) dx = fl‘/;(x, Yk(x) dx.
Hence - -

Treamer s < ([ 10rag” (] meorw as)” |

<ot [ o ) ([ werr ae)” O,

N
by (5.10.4) and (5.10.3) for p’. Here k(z) may be any fyﬁ,gffibn of
L7, Take k) = e pl-tssV@y). O

© ® ypf ¥ \y s
men [ W dep,(_jw e a) (j [

E

w @ N\
or j WP do < ME f pOP
g R

The theorem for » now follows as bef?fé". : _

It also follows that, if M, is the\least constant for which (5.10.3)
holds, then M, < M, Hencensitice p and p' are interchangeable,
= My O '

5,12, TErOREM 103, \lkt"(D[z) be an analytic funchion, regular for
y>0, and let GQ":"‘ .

P+ ds <K (p > 1) (5.12.1)

f or all ﬂalﬂe-s\iﬁ\?j.._ Then ®(z--iy) converges for almost all z, and also
in the mean of order p, as y >0, to flx)—igle), where f(x) and g(x) are
H"‘Ibfj‘ t @nsforms of the class L*.

168 convenient to use the followirg lemma.

LeMma. Let X, (x) be a sequence of functions such that

b

| Pate)ie do < K,
while A, () + 0 almost ev:rywkere. Then if p®) belongs to L7,

b
J. X (@)plz) da > 0.
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Suppose first that the interval (e, b) is finite. By Egoroff’s theoremt
A,(x) ~> 0 unifornly in a set I of meagure b—a—38, and hence

f Af2)pfe) d > 0.
E

< (GL Aalz)[7 dz)”(JE ) dx)”p'

< K(CL o da) N

Also

j X (e} dz
CE

which tends to 0 with 8, and is independent of n. Hence thegreshlt.
If b = o0, we first take X so large that : N\

-
7 %4
’ S

J?An(x)#(x) dfﬂ\ < K( j? () dm)up'w'g@
x 2 | \

and then argue as before with (z, X). PN .

If ®{z) - f{a)—ig{x), it follows from Fatp’@‘s theorem that fand g
belong to L?. We prove (5.4.1) as before; and (5.4.2) now follows
from (5.4.1) by the lemma, taking N

M) = (i) g} T o)

u—-“:‘i'—]-i(v—y)
a«!ld ”#}{';) = u__';_!_,;/y'
. \"
Hence ,s”(z} = H{U-+iV)—3(P+iQ),

where U and R(are (5.3.5), (5.5.6), and P, @ are defined similarly
with g insteadof f. Now make y + 0. Denoting by f* the conjugate
of f, a.nd’sgj"" that of g, we obtain

R fig = (f—if*)—ilg—ig").
'\
Hende f = —g*, g — f* almost everywhere,

\That ®(z) converges in mean to f(r)—ig(z) with index p follows

from the analysis of § 5.10.

That ®(z) tends to a limit almost everywhere was deduced by
Hille and Tamarkin (5) from the corresponding theorem for series
(Zygrmund, T'rigonometrical Series, §7.58). It could be proved directly
as follows. If® has no zeros, the result follows on applying Theorem 93

§ Titchmarsh, Theory of Functions, p. 339.
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to {B)}*. Otherwise, let z, run through the zeros of ©® in y > 0,
gnd let n .

e A
B =] s

L 2,14
(assuming that no z, is 1). For a fixed n, |B,| 2> 1—¢ for y < 9, 587,
and all 2. Let @®(z) = G,{z)B,(2). Then '

el . K
_Lﬁ@+www<ﬁ:§

for y < u. Since G (z+1%), G (x-+ty), (y < y') are related like the {
previous ®(z), fla)—ig(z), it follows from the analysis of §5.1g
(sspecially (6.10.4)} that PR\

Ny
oW %

[leeripra<e O
: S K¢
for all y, K’ depending on K and p only. - \%

If ® has an infinity of zeros, a little congideration of Carleman’s

formula (Titchmarsh, Theory of Fumtiom,ﬁ.t?ﬁ) shows that

3 L) (1 D
is convergent, and hence that Bz) =< Jith B, (z) and G{z) = lim &,(2)
exist and are analytic. It follows,that ®(z) = G{z)1B(); where G(z)
satisfies (5.12.1) with some %, ahd has no zeros, and |B@) < L.
Hence G(z) tends to & Bmitia]éilost everywhere, ag before, and so does
B(z}, by Theorem 94. \\ ™

5.3, Turorem, 1047 Let f(x) belong to L2 (p > 1), and let g(x) be
i#ts conjugate. Letalw) belong to LY, where g > 1, pg < p+9¢, and let

"\ o .
h(@\: j?\{t)f(m-—t) dt, k(@)= j A()gle—t) 4.

-

T}in?ﬁ bg < p-gq, Blx) and k(z) are conjugales of the class .I/P , where
P24qlp+q—pg). If pg = p+g, e} and k{x) are conjugates, 1t
the sense that

-0

B(x) :% f Metu)—hz= g,

—0

and reciprocally, for all values of x.

(i} Suppose first that pg < p-i-g. Then h(z) and k() belf)ng ;o
L%, by Lemma, Bof§4.2. We have to prove that they are eonjugate.
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Let @(z) be the analytic function of which flz)—ig(z) is the
boundary value, and let

Plz) = j MOD—t) &t (y > 0). (5.13.1)
It follows from the lemma of § 5.4 that ®(z) it bounded in any strip
0 <4 <y <y, Hence

ﬁ’&(t)tb(z—t) ) < j M| 1B(z—1) [P [O(z—8) -2 di
; _

< Ky, Jg)(". |A ()] dt) (f |B{z—t)P d\)

Hence the integral (5. 13.1) converges uniformly in Zfr g ¥ =
Hence W'(2) is analytic for y > 0.

Also, by Lemma 8 of § 4.2, \\
] o B ay \ BY
[ verras<( [ wora)™| | @ptore)
J 1 J&
which is bounded; and similarly !
| He-btiberde SV

<(J lﬂ{t)!“dt) 7 j B0 ~lo—0) Higa—0 Y

which tends to 0 ag y\é\Ci Hence, by Theorem 103, h{z) and k(z)
are conjugate,

(ii) If pg = vll*q it is known that h{x) and Ic(x) are continuous,
and tend to tm: infinity.+

In this Wt}lﬁ integral defining A(x) converges uniformly aver any
finite 1‘&}1@6 Henc

e |
if B T~ f““ f MO f (1) —flx—u—1)} d

—

= j )l(t){gs(x—t}'—%(x—i)} dt,

t See Titchmarsh, Theory of Punctions, p. 398, exs. 20, 21.
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gsle) = - j fet et y,
]

where

Now gs(x—1t) > glx—1t),  galz—2) >0
as § - 0, A — 00, for almost all £, Hence, by the lemma of § 5.12, it is
sufficient to prove that )

[ losto)P de < K
for all 5. By (5.11.4) - ~
wi@ O
§—tl ¢ )

gsix) = ;15 f g(¢++a)log

salldef F I ol
ol [
a5

"
i

Hence

6@ <=5 | lgetarfiog

n 51]| ds-.
<K J. lg(t+) Pllog Si:r,”ﬁ’

2 and inverting, the result no“j‘féllows.

5.14. The casep = 1. {5\} & have so far supposed that f(z) belongs
to L?, where p > 1. T ’g;e?neral Theorern 101 fails in the case p = 1,
in which f{z) belongg to L. We have seen (Theorem 100) that g(x)
still exists almost everywhere in this case. But g(z) does not neces-
sarily belong to\L\ Suppose for example thab

O\ 1 _
A= ey >0, 0 GO

K og?t
Then forsd > 0
~S

by putting ¢ = 8u in the last faebor Integrating with respect to

,«\}; J o 1 o f(t) ] T il _ 1 .
W) = g f t_—]—_Eds 7| 2wtlogh~ 2nzloge
apn 1]

Hence g(x) does not belong to L. In fact it is possible to cfmstruct
examples in which g(») does not belong to L over any interval,
hOWever small. . ’

We have, however, the following theorem.f _

i C_OH'GSPOHding to & theorem of Kolmogoroff on Fourier series;
(1), Titehmarsh (13), Zygmund, Trigonomeirical Series, §7-24-

sea Littlewood
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TaroreM 105, Let f(z) belong to L(—o,00). Then the formula

jf(x+t)ﬂf(x ) .14
defines o ﬁmte g(x) for almost oll values of x, and
¥ lglz)]? )
Tzt dx (5.14.2)

—_ac

N\
is convergent if 0 << p < L. : R
: . RGN
We may suppose without loss of generality that f(¢) = 0, z}n\d that .
f(&) is not null, Let ™

U
Y

D (z) = - f(t) dﬁ U, (y > 0;)\,\
as before. Then e \

if & is large enough Let 0 << p << 1, a.nd let
{20 = (U A4V)P = giprog(v'wz) iparctan(V )

where —1r < arctan(V,[U,} :37. For a fixed a, d,(z) = O(1/iz]).
as |z| > o, and the calcullm\of regidues gives

o LA\ .
{E ek ds — a@, (0 <y <D,
Now \FD (a)i_ :T f U dt\ J.lf(t)[dt
N\:..\';. o
Heneo \ j (Ua;{'_l_*'Tl") & < K, (5.14.3)
U >0 |Vi>1,
U+iV
HU iV — (V) = |p j 2lds| < pU VPP L U,
iF

while if 7 > 0, |V] < 1, |
KUV —GVp| < (U41p41 < U2
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Hence
AR A SAIA P JU+2
J.“_"?Jrl h 241
X _¥ R ()
fU detin=1 fdxf(t T adt2n

ff(t) dt +2n < jf(t) dt -!-21:' (5.14.4)

From (6.14.3) and (5.14.4) it follows that

A £\
f a1 < A

—a0

Now
(A {x2—y?+1)eos ypw £ dxy sin Fpa IV 2

R{ 2+1] IV;P (x‘.} 2+1)2+4ﬂ72y2 O > K.’ﬂ 2+1

for sufficiently small y and all . Hence \\ !

IAG QY
fx“rl * < Lo

O

and the result follows as in the proof of Theorem 101,

5.15. Lipschitz conditions§. THEOREM 106.1 Let flx) belong fo

I? (p > 1), and let it satis y the Lipschitz condition

|f(a:+h)— ) < KRhx @<a<]) (6.15.1)
uniformly in z, as h$0(say for all x and 0 <k < 1). Then Hilbert's
reciprocal farmulafi(ﬁ 1.9), (5.1.10) kold for all values of z; and gz}
also belongs tKIﬂi and sotisfies a Lipschitz condition with the same o
as fla).

In thig dake the integral (5.1.9) plainly exists for all values of #.
¥ e"next observe that if f{x) satisfies the given conditions then it
is bour{ded——in fact it tends $o 0 as z —> 0. For since f(z) is continu-
ous, the points where [f(z)| > 8 > 0 form a set of intervals. The
length of such an interval (2, 2,) tends to 0 as &, -> w, since

{y— ;)37 < j |f(z) ] de 0.

1 Titchmarsh (5). The result corresponds o Privaloff's theorem for Fourier series.
8es Zygmund, Trigonomtrical Series, §7-4-
I.
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Now since |f(2,)] = 3,

If)] < [fledl+Hif@)—fla)] < 3+Klp—az|* < ;+K§2;wlﬁ,
hen z,. Hence f{x)— 0,
hich tends to 0, by choosing first é and t vy { '
" I: follows that if {5.15.1) holds for small A it holds for all 2, with
a possible rechoice of the constant K.
Now as iy > 0,

Chap. ¥

o

Vool = - [ (- o Ua+t—fa—) as

N\
+)—fla—t [t N
= -ﬂx (0 +y Jai- o(yzf By ) v
A]s 0 .'f‘.“’
% R

- _i f +y2)2m+ )dt_ N \f (t2+y“)2m T

— G

( = md‘)zowm_l)'
Hence, taking b > 0, -
|g(z+h)—g(z)| o)

< [g(x+k)N’Tx+h )1V ok, BY—V(, k)| +- lg(@)+ V (&, B)|
z+i'a
ﬁm%o(

f —V(¢h) d&‘)JrO(k“) = O(h"),
50 th%ﬁ

«The re
“&ll' value
\ tmuous

If « = 1, we obtain mml.larly

aV FL - dt
(Iéa—jz)'z“fﬂ)w(f )

1

1y
1 2.__ 1

~1y

¢(«} satisfies the required Lipschitz condition. .
ciprocal formula (5.1.1¢), already known to hold for almos
8 of z, now holds for all values of , since each side is con-
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and it follows that
glx+h)—glx) = O(jk}log 1/JA|).

5.16. The allied integral. We next return to the allied integral .
(5.1.7), which is formally equal to g{x). We can now prove the
following theorem.

TuroreM 107. Let f(x) belong to L{—c0,c0). Then, for any positive
x, the allied integral is summable (C, o) to g{x) wherever

) = 1 j f+t—fle—t) dt (5.16.1) >
kid i .
~e \

exists, and j f(m+8)—flz—1)| dt = o (R); cs 16.2)
and $o almost everywhere \\

It is plainly sufficient to suppose that 0 < o <IN '

We have to consider : RN

P = O
Jimn (1H ’%"’)“ du J. f(m+t)sinua dt
. ,.“ \
— lim J'{f(m.yz%f(x_c)} dtf (17""1‘) sin ut du.
Now W\
\ .
f (I—X) sin ut du — aT(l »)esin Mw dv
o 2N
:..\x;‘\w._,. ____”_[(1 1})0‘5005 Atv] _.I... JA {1 U}G’-IGOEMU d!)
A W )
S\ o cos(At-—w
'"\\"..\ +Azxtnr.+1 J‘ i .
N/ \
K
Hence [ (1——5) gin ad du—}- < ?t‘”t{:t‘*)l
b

It follows at once that, if § > 0,

hm f{f(x+i)*f(x—t)} dt f (l—i)sm ul du = J.-M-t—) dt.

¢
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Also

f{f(ert)—f(x-t)} dt f (1~—;i)sinm du
1/A 0

]

8
[f(m+t)—f(m—t)_ i _,_O[ fe+t)—flz—t)l
t ¥

feiya
1?/\ 1/
and, if (5.16.2) holds, the last term is
~
¢ . 5 ¢

1 N
0 1A NS ¢

( +1) 3 d,'g [J Y N/

o AN
+ e imJ‘ [f(x‘f'u)““’f(@f——u).i du
1A o .u..\"
1 -8 & v’
= (1}+O (X& f ta+1) __;:&us)
1A

by choosing first 3 then A. Finally, . A\

i A R
x &

1] (1%‘) sintd du

and g S

1

! {f(x—f-.t] —{" x<\ﬁ}}’}‘“f (1 -—-;)sin ut du ‘|

o/

< KA,

u" .‘.Q lfA -
NOT < EX [t —flo—t)| dt = o (1)

This Prove.a\t'lﬁ"i;heorem. °

5'175"%?“‘?“011 to Fourier Transforms. In this section we
make m application of the theory of conjugate functions to the theory
?ﬁ?‘"@mer transforms. There is one respect in which this theory is still
‘mgomplete, We have shown that if f(x) belongs to L¥ (1 < p < 2)then
J(z) hag a transforry F(z) belonging to L', and F(x) = Lim. F(z,a).

We hﬁf"ﬁ not yet been ghle to show that the reciprocal relation
fe) = Lim. flz, ), where -

f(m:a' = '_!_‘ -ixé
) Ty | Pl
also holds. We can now supply this Point.+
1 Hille and Tamarkin {3)-
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TaroreM 108. If f(x) belongs to L? (1 < p < 2), then
f(x) = Lim. f(z,a).

1t follows from Parseval’s formula (as in the proof of Theorem 58)
that

1 r gin(x—u)a
flz, @) = Pt f bt Ta—w du
_ sinza P 3 Sf(w)eosua du —205%% p f(u)smua
T w T a—u B j
= sin 2@ ¢, {x)— cos xa P (r) \ O

say, the integrals being principal values at # = 2. By 'Ifheorem 101

f bel) [P die < K,y j |flucos ua|? du < Ky ]ﬂ e du,
and similarly for ,(x). Hence \\\\“
J' [f, @) |? d < J (201 (%) [r+2p [gf;w(x)[?) dzx < K, J‘ f)P du.

— W

This proves that J. § f(:r:)’;——' f(x, @) F’ v

is bounded as @ — o0, W‘e\ha,ve to prove that in fact it tends to zero.
We can construct ?\?ﬁep funetion f¥(z), zero for |z > X, and such

that

:‘1\.%’} ) I [f@)—f*@) [P de < e.
& L
qu \u
Y p
(J%f(f) —f(w,a)p dx) <( [ vw-rer &)+

([ el )"+ [ pea-feara

J1fp+J1m+J1f1’
say. By hypothesm, |;} < ¢; and by the above method
|| < Kplhl < Kpe
Also f¥(z,a) - f *(x) boundedly in any finite interv al, say (— § £
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now if £ > 2X,

@ o - X . b
| ! lf."(x.)v-f*(f;a)I”dx = Ef N (%)l rO=E
f a0l dtr & <K, I@f‘%ﬁ ( j ) dt)p

We can choose £ 8o large that this is less than ¢, for all a; and, ha,vi\ng
ﬁxed g: .

dx

<Kpf
3

é N
f [FHa)—f*x, a)|P de > 0 <O
¢ QO

by bounded convergence. This completes the proof. ¢ N\
5.18. Further cases of Parseval’s formula‘»:\W;e have already

. seen that (2.1.1) holds if f and ¢ are L? (1 < p2). If f and g are
the given functions, and belong to L, L¥/zespectively, we cannot

state the result, because the existence of @isnot known. We require
an additional condition. B o\

Temomey 100 If fis L2 (1 < p2 2), and g 4 L* and L7, then
A . ~.': : . o
fm [P0tz = [ fo)g(—) do.
Eady K\ -
Let & be the transforfiyof g. Then

Og) \(‘f}l <Ah 0 (o] > A); g2, ),

defined as in {?:.52'2)," are transforms of L2; and the former is also Z?.
They are the{bfcre transforms of L», L#, and Theorem 75 gives

NY A <
§ { Flz)@() de = f f@)g(—a,A) dz.

Axii'the previous section

\V ) lﬁfj-{p')g(~m,)t) = g{—x),
and the resul follows, .

TEEOFEM 0. If fis Lo 1 <P < 2),qis L¥, and the integral for
& i3 uniformly Convergent sn any interval 0 <8 L 2 <A, then

. _8 )( o
s-i'ﬂim(__i + af )F (©)6@) dz = [ fa)g(—x) da.
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We can now prove by uniform convergence that
Gley B<ll<<A), 0 (21<8, 2>

is the transform of

J' ou )sm)t(u—x)*smﬁ(umx)d

U—x

The proof now goes as before, but to complete it we want

tim f @) de f gD gy, O
Now . o ,"\”\\“;.
J‘ (}smS —-ldul ,\\‘:\\
A - | \,
x+1/8
<5 f |g(u)|du+( f +\]f E‘_'dwo

o—1/8 —o
ag d -0, for any fixed «; and, as befoxe, 1ts mean g'th power is
bounded. The result therefore foIIQ\v& from the lemma of § 5.12.

7N
\
4 (‘\’
&
N\
:..:\‘.)
N\
N
\NY
/" ‘“/
O
QN
O
\ "



VI
UNIQUENESS. AND MISCELLANEOUS THEOREMS

6.1, Uniqueness of trigonometrical integrals. Tar classical
uniqueness problem for trigonometrical series is to show that if

3.+ i (@, cos nz+b, sinnz) = 0
n=1

for all values of x in (0, 2r), or all values with some exceptions, the\n '

a, = 0, b, = 0 for all values of n.
The correspending problem for integrals is to show that £
. w 'S X

[ ooy tbgsinaydy =0 .\ @.L
0 o

In some sense or other for all values of %, possibly. »\mﬁh some excep-

tions, then a(y) = 0, b(y) = 0 almost everywhere.” A more general

problem is to show that if a given function Ji&yis represented by a

trigonometrical integral, AN

P

[o@eosay-+ysinmgyiy — fy, . (6.1.2)
] N

in some sense, then the integral}';sfheeessarﬂy of the Fourier form,
i.e. in some genge N

S N\ i
ay) = % f S (x){({é«a:}; da:, bly) = é J. Jlx)ein zy dx.
OWing to the synimetry of the Fourier integral formula hetween a
function and itattansform, in the integral case this is not, formally,
a new problegi; It simply amounts to the question whether a{zr) and
b(z) are representable by Fouzier integrals; and in some cages the
answerdollows from theorems which we have already proved.

thi? Ppose, for example, that a(z) and b(z} belong to L(0,c0), and

o

f {a(y)cos Y+ bly)sin ay} dy =10

for almost :?11 values of z, Adding and subtracting the formulae with
x and —z, it follows that, both

o
[+ =]

fa(y}cosxy dy = 0, fb(y)gin xy dy _ 0
1]

1]
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for almost all #. By Theorem 14 (for an even function)

co

A
)1‘21; % .[ (1-—%)008% du j a(y)eos uy dy = afx}
o
for almost all x, and in this case the left-hand side is 0 for all z. Hence
a{z) = 0 almost everywhere. Similarly b(z} = 0 almost everywhere.
Theorem 22 can be used to give the same Tesult.
Suppose, again, that a{y) belongs to L*0,00), and that
f aly)cosxy dy = 0
4]
for almost all values of z. Since the limit and mean hmﬁ of a
sequence, if they both exist, are equal almost everywhers, the cosine
transform of a(x), in the sense of Theorem 48, is null @Ad hence afz)
is the mean limit of a sequence of null functions, and i8 therefore null.
The unigqueness theory of Fourier series suggests a different type
of theorem, in which the possible values of Q %or which {6.1.1)} fails
are much more restricted, but in whicha(»} and b(z) do not neces-
sarily belong to L-classes. The main.difference between the theory
for series and that for integrals is that the convergence of ¥ @, cosnz,
for example; in a set of positive ;izléa.sure, implies that &, - 0; but
the convergence of "‘Q’"
\'\‘.f u{y)cos 2y dy

N
AN

o
does not imply that, alx) > 0 as x> 00; for example,
convergent if a(x) s e?cos €. :
7, :

the integral is

6.2. The.epression
. e\\ i et B) 0@~ 200 (6.2.1)
" A o T hz

eN® - .
isccaliéd the generalized second derivative of @(z). The uniquenessy

thedty of Fourier series depends on the theorem of Schwarz (see
that if B(x) 4 continuous,

Titchmarsh, Theory of Functions, §13.84), bt
and has at all points of an interval the generalized second derivative 0,
then ®(x) is & linear function in the interval. Here we shall proceed at
once to the general problem with f{z}, and use

Temommm 1114 Let () be continuous in (a,b), ond have at every
point of this interval @ finite generalized second derivative f(x), which

t Do la Valiée-Poussin, Cours &'analyse infinitéaimale, 1914 ed-
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belongs to L{a,b). Then

q:»(x). — fdu ff(v)-d-v Fetar (@ <x g 6), (6.2.2)

where a, and @, are constants,
We first prove two lemmas.
Lywwa 1. Let ®(x) be continuous in (a,b), and let
E‘I’(x-i-k)—HD(a:—k)*—%(x)
P h
be 2 0 for every x in {2,0). Then no part of any arc of; &J’Eé curve
y = O{x} can be above its chord, O
Suppose that some points of an arc (z,,x,) lie a}?ﬁ%;e the chord,
PQsay. Let R4
Pl2) = B(2) - Je(r—a,)w—ay) (2 0).
Then, if ¢ is small endugh, some points of the’ corresponding are of
¥ = O(z) will lie above the chord. Let. 3 be such a point of this
eurve, whose distance from PQ is nobJess than that of any other

such point. Let & be the abscissa, of\M. Then, if ) is the tangent of
the angle which PQ makes with the z-axis,

e =

(6:2.3)

Hence Q)e(x:!\%?_fo)\+(bc(x—k)-2lbe(x) <o,
ie. BETR) HO—h)—20() < —e,

for all small & This contradicts the hypothesis, and the result
follows, \

Lessta @) Lot 0(x) be continuous in (@,b), and let (6.2.3) be > 0
Jor almeat all  in (a,5) gnd e nowhere —co. Then no part of any
arc.of the curve g - D{z) can be above its chord,

CJE6.23) is uowhere < 0, the result follows from the previous
lemma, Otherwise, let be the set, of measure 0, where (6.2.3) < 0.

Lett x’(x) be a non-decreasing absolutely continuous funetion such
that x'(2) = + o in &, and x(bY—xlo) < ¢. Let

xi(®) = f () du,

T See o.g, Titchmarsh, Theory of Functions, §11.83. .
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1f  is & point of B, and M any positive number, however large,

X(x'l‘u) X(‘v ‘u)
AT A =M {(ju] <9
Hence, if & <

nlE R+ xl(x*k) Pule) L j {xlo+0)—xla—w} du

h

sz ouM du = M,

and so the left-hand side tends to infinity as A - 0, KoY
Let Q(x) = Pl2)+x:()- L0
Then e HOE—R—200) o\
h—+0 h? ..\\

for every « in (@,5). Hence no part of any are ef y = Q(x) can be
ahove its ehord. Since this is true for arb1tmrﬂy small ¢, the same
result follows for y = ®(x). \ ‘.,

Proof of Theorem 111. QA

Let  p) = minff),n), g = max{fz), —n}.
Then piz) < flz) < g¢lz), and, ginice f is integrable, so are p and ¢.
Let & .
prfe) = f g@.ﬁu, pala) = | po(w) du,
and similarly for . ¢

Then gy(w)— GJ(w‘)\has almost everywhere the generalized second
derivative g(z)ZH(z) > 0, and

-t .
qz(w-ft&qsg{; h)—2g5(2) _ f du f g(v} dv
\\. ; h z;:_u

>hfzJ.du f (—n)df} —

Fotad 3

Hence the generalized second derivative of gy(z)—®(x) is nowhero
—0. Hence 1o arc of y = g4(x)—®(z) is above its chord.
The chord through the end-points ¢ and b i8

¥= ——{qz(b) —B(b)+ Ol —0(e),



156 UNIQUENESS AND
and hence

05— 0(0) < T {0 — 0B+ D)} —0(a) (@ <z <b)

Similarly, no arc of y = py()—®(z) is below its chord, and i
follows that _ '

Po@)—0(z) > E{Pe(fi)—‘bw)"f-‘b(w)}-‘p(“) (@ <2 b
Making % - 00, py(%) and g,(x) both tend to the limit

Chap. VI

& k] .\
fiwy = [ du [ fto) do. O\
Hence : €« e O
@) —0w) = {10} D)) (@D < b),
the desired result, AV
6.3. TEROREM 112. Let aly) and b(y) be igthegrable over any finite
interval, and zero in an interval conmim'ng{fm\origin. Let

[ aty)cosey +bisinzy} dy = f)
@ N ’
for all 3 in & certain interval. Thoh

9%e) = — [Nolyloosy-+b(y)sin ay} %

4 i" ‘]
em‘st; f;}r every « of the'interval, and has the generalized second deriva-
tive f(z).

The convgrgéhée of the integral for ®{x) follows from the second
mean-valgg theorem. Now

\9\\-53":; 3 cos, COB . cos
e I g By =2y — —dsineyy Py
Heénce

Ol )01y s0(s
wo =

= f {a{y)oos ay+b(y)sin xy} 4sinhy dy,

; iy
| (6.3.1)
and it is sufficient, 4o prove that this i :
i th formly
with respect to 4 for 4 > o, 15 integral converges uni
Let

II @)oo zy-Lb(y)sinay) dy — p(r),
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o that [{(F)] < ¢ for ¥ > Tife). Then

f{a(y)cosxy+b(y)smxy} k—@i@d ‘

[t g o

21
Hefism kYn+ Jld (431:19 )

RY§ hy® O
d {4sin 1% . .’\:\
< ete J. du( 7 )] duw = Ae o
0 "0
for all & = 0; hence the result. "z

6.4. We shall now prove the uniqueness theorem ott\the assump-
tion that a(y)/(1+y?) and b(y)/(1-4y?) belong to 140, oo). Later it
will be shown that this condition is superﬂuous \\

Terorey 113.+ Let al(yn)/(1+y2) and b{y}{(‘l—%y*) Belong to L(0,0),
and let

—em

| {a(y)cosmwb{y)m.xy} dy = fiz) (6.4.1)

1]
for all values of x, where f(x) i# everywhem finite and integrable over
any finite interval. Then for, ﬂ]}most all positive values of ¥

a(y) ~—.~1}n J (1—@)f(m)eosxydx (6.4.2)
A
) fiasin ay de. 4,
Qbly = Zlim £ () opineyde. @43

hfn"’}la?'twular, if fl) = 0, then afy) = 0, bly) = 0 almost every”
WhEr
The condition (6.4.1) may be broken for a finite set of volues of ,
provided that a(y) — 0, bly) - 0, as ¥ = 0.

By replacing = by —=z in (8.4.1) and adding or subtracting, we
obtain similar formulae with' the cosine or sine integral only. We
mey therefore consider them separately.

1 Pollard (3), Jacob (2). The unrestricted result followa from Oﬁm‘d (7}
given here is by Offord aad the author.

the proof
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Suppose first then that b(y) = 0. Suppose also that aly) = 0 for
0 < y << §, and lef ©

O(z) = — J %?cosxy dy. (6.4.4)

a

By Theorem 112, ®(x} has the generalized second derivative f(x),
snd here f(x) is integrable. Hence, by Theorem 111,

Dfx) = f du ff(v) dv +p-+gz,
[ ]

N
where p and ¢ are constants; and ¢ == 0 in this case, sinr;a:l? and f
are even. Writing " N\
h) = | f(v) dv,
) L
& 0\\
we have Ba) = [ flw) du+p, 30
and P
A A W
f (l—g)f{x)cosxy de = J.fl(x) {E‘}i;fg_f: (I——;)y sin :vy} g
1] 0 )."

~ [l f- e+
S J LYo ensey)
.,

{ A » A A
—_ Q(A)(;O?A‘ »—?-{--21‘—‘1{ f O(z)sinwy de — g2 f (1—;—)‘1’(50)005“?1 dz.
R > ; (6.4.5)
ShW)/yﬁ is L, (6.4.4) and Theorem 14 give

o lim (1-§)(D(x)cosxydx = " (6.4.6)

\ \ —> g . Y
almost everywhere, Also O(z) > 0 ag 2 - w0, by Theorem 1, so that

the remaining terms in (6.4.5) tend to 0 ag A —00. Hence

lim (1~§-")fc:c>eoszy I = Jmaly), (6.4.7)

J /

the required result with the conditions stated.



ot MISCELLANEOUS THEOREMS 159

To remove the restriction that a(y) = 0 over (0,8), let
w@)=al) @28, 0 &<d)
8
and let [ aty)eosay dy = x@).

o
Then the result already obtained shows that

A
lim (1—§){f<x)—x(x)}eos 2y dw = noyly)

A—sc0

almost everywhere. Also, by Theorem 14,

A .
;]li_{:r:o (1 — %) x{z)cosxy dz =0 \\ A
for almost all y in (8,c0). Hence *‘
A A\
fim [ (13} fiekoonzy de = frah”
A A 4 \\':

for almost all i in (8,c0), and so, since 3 i3 a;rblﬁrary, for almost all ¥
in (0,00). This is the required theorem fér’the cosine integral.

Next let a(y} = 0, and snppose tv]:@b:b(y} = 0in (0,9). Let
F(z) = — ?%’Qsmxg dy. ' (6.4.8)
Arguing as before, we obt\stfn\ ’ |
For = fan [ gy do 40
PN\ 30

and -

f (1—-%_}:‘@}3;1@ dx = f{.fz(f”)+9}ls—]£;—y-—(l-—§)ycosxy] dz
o Q ;

D
o~ A

\J . i A
\ ) w“% ¥ (x)cos zy dx —y* f (1—55)‘1"(93)@19:?; dx.
A A | A
§ 8 (6.4.9)
The proof now concludes as in the cosine case.
If there are exceptional points where (6.4.1) does not
argument merely shows that

y = O(x)— Tdu ff(v) d‘v.
0 ¢ :

hold, the

(6.4.10)
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is & linear function in the intervals between these points. But now, if
ey} < e b)) <e for y=A,

|
i
i
P

¢ : in24h
f {t'»iﬂ(y)cosw.f;-f*b(y)m-'Ey}%ﬁ%-y%—i"f dy‘

a (=]
-
< [ Uat@)l+ i)y dy + 2 [
° A

< K()+A4¢. ,

 Multiplying (6.3.1) by %, and choosing first ¢ and then J, it fouo}rs

that Hm{¢<x+mﬂmw)_@(:c)_—mx—k)} o O
ks k A O

Taking « to be one of the exceptional points, it fo]lows.‘jbiﬁ:t the slopes

of the straight lines which make up the graph of (6.4.10) are the same

on each side of the point. Hence (6.4.10) is o single linear function,
and the result then follows as before. N\

$

6.5. To remove the restriction on a(y):ﬁnél b(y) we require some
more preliminary theorems. O

*

TEECREM 114, ]f [ fyasyt i
[T

converges uniformly in any ﬁn*iéé inkerval, to \J(n)F{y) say, then
P

z}? ’
lim f{EN {1_¥ =
tiny JEN (1-9) epeoney 2y = s
for almost all N“) ’

This is mg@yg variant of Theorem 20; the proof is substantially
the same’,\\iepending on the particular cage of the data, tha

[ sy
bxists. ’

We require a similar theorem for the sine integral, but in this case
‘the argument is more complicated,

THEOREM 115,

T Let z, be a sequence of numbers tending to infinity,
such that

xﬂ > kﬂ_lxﬂ-l (n = 2; 3)‘--),

t Cantor {1).
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Hence, for 7, < % < £, where ¢ < 1, LYy, 7 lit.as between 1z
and #w; hence sinzy is monotonic in at most two mtervaly, and
lsinzu| 2 1/42. If e.g. sinzu is steadily increasing,

npt+é npt+E . B+ £ _
f Plu) du = é-{-i‘(f)ﬂl-fv—% du = —1 — f H(u)sin zy du
81N X4 |IN :m#
R Ry By

by the second mean-value theorem, and the right-hand side tends
to 0. Similarly in other cases.

Q"

THEOREM 117. If f ft)sin gt dt {65.2)
[IA
1]

{ N\

converges uniformly in every finite interval, to 3 E(y) .gcig,;,\ then

A "
. 2 Y . D
lim (;) f (l—x)ﬂ(y)sm-my & = 163 (6.5.3)
Jor almost all x. ’ RN
. . . 2,
We can insert (6.5.2) in (6.5.3) and invert] by uniform convergence.
We obtain Y,

oty

i I“Cos'}‘(x—t.);.il.:—cos){(x_;_g)
™ f d (t){_f\(x—-t)éf}?'“ zm;)?“}_dt- (6.5.4)

Let 7> 2, and consider )

-~ N\ EN ) . . n A
T [ A0 (7S s
Mz —g) § & e

Whe;‘e N is the jnﬁégér next above 2AT'/x. By the second mean-value
theorem /- :
R+ LA

AL feosre . (1 f
& W.L o dt__O{%mé ! f(t)d'],

@m A £ <y < Hnte /. By Theorem 116 the last
integral tends to 0 as 7 - <, uniformly for A > 2/7. Hence

ol 38 = o) = ol

uniforml?' With respect to . Similar arguments apply to the rest of
(6.5.4) with ¢ > 7' Also, for & fived 7, the part with £ < 7 tends to
i) almost, everywhere. The result therefore follows,
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where k > 1. Then, given any interval («, §), there is a number Q in
(0 8) and o sequence of integers ¥,,v,, ..., such that
x,2—{2y,+1) -0, (6.5.)
Suppose that 0 < « < B, and divide {«,f) into thres equal parts
(%), (v, 8), (8, 8- Let , be the first of the z, which is greater than
both 3 6

‘Choose y, so that (2y,+1)/x, falls in (y,8). This is possible, since
x, > 6/(f—cx). Then determine y, 5, %, .o, ... 80 that

'{2yﬂ+1+1)_ (2yn+l)?;;.ﬂ

%1 . .(n = y,p41,..). ',\:'\

If in any case there is more than one such y,,;, take the least; the
process is then unique; ¥y, ..., ¥,, can have any values. *‘

The numbers z, and y, now determine a sequencel of fractions
(2y,+1)/x,, which tend to & limit Q; for, by the abaye inequality

Wkl 2| o L A

xn—i—m mﬂ xﬂ,-l—l ""'r‘qn+m
Also AWV
2,1 1 1 1401 1
Q_ bk < ! .. Paiut N S I [ —
T | Tpsa Tpsa | H.:;Ft’*:"’(kn ‘ km—i_ ) z (k" —1)

so that (6.5.1) follows, Finally, 338 in («, 8), since

k| PP NP SR T MY
‘Q @ g\x&k*-—z)éxy(k*n“‘ﬁ "

TeroREM 1186, If,\"',fj $(u)sinzu du
C a

v

] nif
o rp = max | ¢(u)du->0.
g N osfst o
If'the theorem is false, there is a positive € and a sequence 2, such
that |r, | > ¢; and from this sequence We can select a sub-sequence
%y satisfying m, > 2¢-'n, ,. Hence there is an @ in (0,3w), and
Integers ¢y, ¢,, ..., such that
enfn—(2y,+ 1) > 0.
Hence, if u is large enough,

R (LT
1362 ) M

i convergent &r@ values of x, then as n—> 0 '
N '

s
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6.6. TuEoREM 118. The resulls 'of Theorem 113 hold if aly) and

bly) are integrable over any Jinite inderval, and (6.4.1) holds.

We again define ®(z} by (6.4.4), but now the integral is not neces-
sarily absolutely convergent, and ®(x) does not necessarily tend to
0 at infinity. However, since _ .

i

aq(y) = f a(u) du > limit

)
a8 y o {by putting x = 0 in (6.4.1)), and ~
b4 ' Y
aly) _ ay{¥)eosxY . zsinzy  2cosayl 4
f—chosxy dy = 1—172—'{' a,(y) "yT“E“- ----- yT—ldy,\
0 N

the integral (6.4.4) converges uniformly over any firtkte interval.
We therefore deduce {6.4.6) from Theorem 114. Also*

b@) = — fal(y>{?-¥+%§?}\dy — o)
J y AN :

as & =00, by Theorem 1; and, for.a fixedy,

A A 2 oXY, -
.[d)(xjsin ay do = j [o {1)— J. a{(ﬁ}x S:;@ du]sinxy dx
o a ‘Si'i:l" _ '
)] &'&Ru) ‘ﬁfi“"(““yl-l_—_w_
T ug u_y u_y
(y+1
,\ ;7 Asin Aty 1—cos )t(u‘f"?/)} du = o{d)
e\ - uty ut+y

88 A > co. H“G\nce (6.4.7) again follows from (6.4.5).
In the'ine case we obtain (6.4.8) as before, but now we get no resulb
bx..P.“gt‘mg 2 = 0 in (6.4.1), and we have to use Theorems }15-17.

\W‘e"have
Yo Yz sy Limiz
Y9) iy dy : by) .
j gg‘)smxy dy = ( J. 4 Z )Fsmxydy.
o W vER bnfx Hr+Lywe

The secornd mean-value theorem gives

Vi
2
%‘?sin 2y dy = 0(% j b(y) dy),
£

v+ Nimix

vmle
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Hence, for , < u K ny 4§, where £ < 1, ru—y, n lies between 1x
and $m; hence sinzu is monotonic in at most two intervals, and
lsihau| 2= 1/v2. If e.g. sinaw is steadily increasing,

ne+é n+é . T
' f Hlu) du = f E)sgx_u du = —.~1—- J. PHlu)sinzn du
sin 2% sin zn,, -
g 7, Ty

by the second mean-value theorem, and the right-hand side tends

to 0. Similarly in other cages. .
Q"

THEOREM 117, F Tnf(n)sinyt di | | O\ (6.5.2}
converges uniformly in e-ueryuﬁnim wnterval, fo \f(%n}%(g);:;ay; then
A Y\
lim (3) f ( ——%)E,(y)sin 2y dy (o) (6.5.3)
Jor almost all . ’ N

o\ _
We can insert (6.5.2)in (6.5.3) and inxert, by uniform convergence,
We obtain O\ :

—*CG 3

1 1—cos A7) 1=eos,\'{ﬁc+t)
= f f(t){——z\(_q;f}?'_ﬁ__ﬁﬁﬂ)'z_' } dt. (6.5.4)
Let T > 2, and consider‘. ' .
> AN I S )
1w [ e, ('] [ ) ftonx
[ 5% T2 | Sy
T RS T =0y inmi)

where ¥ ig theintteger next above 2AT/11-. By the second mean-value
theorem /) '
O\Y ot 1)arfh :
A ftoosxe g
X O\ __028_6 af — _.1__
S [ Sta—o o | 10 4
NS Enmid : g

\ivhere InmA L £ <« 7 % %‘(“4‘1}7?/)‘.- By Theorem 116 the last
integral tends to o as n >0, uniformly for } > 2/7. Hence

T=od+ 25‘)* (%) =(a)

(6.5.4) with ¢ > 7. Also, for s fixed 7 the part with ¢ < 7' tends to
flz) almost everywhere. The resuls therefore follows,
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6.6. THEOREM 118. The results of Theorem 113 hold if aly) and
bly) are integrable over any finite interval, and (8.4.1) holds.

We again define ®(z) by (6.4.4), but now the integral is not neces-
aarily absolutely convergent, and ®{x) does not necessarily tend to
0 at infinity. However, since

v
a,(y) = j a{x) du — limit
B
ag iy > co (by putting x = 0 in (6.4£.1)), and

¥ X i '
J UY) oo xy dy = M-{- f “1(?!)‘x s;l;xy+2003 w] @,
J .

gz VE 3

Yy LRV

the integral (6.4.4) converges uniformly over any ﬁmge'}“iritewal.
We therefore deduce (6.4.6) from Theorem 114, Alsa\ s,

PAL

o) = — [P+ L = 0w

as # — o0, by Theorem 1; and, for a ﬁxe:d-’;z;!:,‘
A @

A O\ )
I®(x)81nxy de = J [0{1)'— f 0{1@’@’;&& du)sinmy de
° 9 ‘L’"rl‘r:'ol’ ' .
- =o0(A)—} [ o AsinMu—y) 1—cosAu—y)
= 2z ¢ “"f‘.iz u__.y u—y
34+

. _AsinA{u+ty)  1-—cos Mut-y)
O uty wt+y
a8 A > 0. Hene\e (6.4.7) again follows from (6.4.5).
In the gigléc"a,se we obtain (6.4.8) as hefore, but now we get no result
by IJUttihg 2 == 0 in (6.4.1), and we have to use Theorems 115-17.

du = o(A)

Welbave
s f P—— v+ Dmfe o
n b(y) .
[ My~ +3 | sz
y, "y V=Y yumix A+ imlx .

The second mean-value theorem gives

7
2
{}_(%}sin wy dy = 0(% j b{y) dy),
y .
3

2t Dl

“Awsrle
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where Jumjr < € < 9 < Hv+1)mfz; and the last integral is o0 (1) ag
v >0, % >0, and is o (1/z) as v—>¢0, £ >0 (by considering O{1/z)
terms of type r,). Hence as 2 tends to 0 or a0

[ =ofefoe 3] o)
¥ .

Hence (6.4.8) converges uniformly over any finite interval, and

. : ¥z} = o(z) ~N
a8 x —>o0. Also
A ¢ \:\
I ¥(x)eos xy da ' _ BN >
5 . : .
— T b{u) {1 —cos A(u+y) 1—cos A(uuwy) -
- [t S,

¥+ .
‘a8 A >0, by an argument similar to that ggat used for ®(z). The
result now follows ag in the previous ¢

We can also state the above result alrect theorem on Fourier’s
integral formula, -

THEOREM 119. Let f(x) be micgqmble over any finite nterval, and let
hm f f(t)cosxt dt Ilm f fBisin ot dt

have finite wlues for every z, and let tkese wluea be @Megrable over any .
fintte interval. Tken\

A
fl) -; ’;_- (Ihu){hm ff(t)eosu(x—-t} dt} du.
\ A2 Y |

6.7. @egrﬂa in the complex form. The resunlt in this form is

TM:OREM 120. Let F(y) be mtegrable over any finite interval, and let
o

oy

v awx/(zﬂ) f Flyle-tov dy = f) (6.7.1)

Jor all values of 2, wheye f(a:) 18 everywhere finite and integm&le over
any finite interval, Thep Jor almost al Y

Fly) = lim o A -2 f@evde.  (6.7.2)
A—»m\f A) _

In particular, tf flz) = 0, tken F(y) = 0 almost everywhere.
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Sinee

j Fly)e= dy

= 2j[{F(y)+F( oosy—(F(g)— F—y)inzy] dy,

‘the theorem is equivalent to Theorem 118
Fhere is a specially simple argument? for the case f(x) = 0. Let
Fi(x) = f Flu)d | N
Then | O\

4 . A X ¢ N ~
| P@leier dy = RNe-i—Fy(—Ne iz | Fly)ed>dy.
I~ ' RN N T

Replacing « by —=, and adding, - \
A
| Flleosay dy = {R(N)—F(—Noosehta) j F{y)siny dy.
A r o\ A
Now F)—F(—A) = j £y dy—:-o
=2

as A -> 00, as a particular case of the data. Hence

a3

]J.m x £ Fl(y)sma:y dy =0,

and so h.m ‘}Fl(y) F1( y)}ﬂmxydy— 0

for 2 # 0, by\the above argument; and for ¢ =10 becausa the
integrand s}jj

We dedﬁ‘ce that Py —F(—y) = 0o
from"ﬂl‘heorem 118; but now b(y) is bounded, and all that we Want
“Q"m W(x) is obvious from its definition. Hence

Fy)+F(—y) =0 .

The argument applies equally well with F(y)e?, with any ¢, instead

of F(y). Hence
Fy)ebv F(—y)e & = 0.

~ for every 4 and £. Hence F(y) = 0.
1 Offord (6}
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Offord (7} has recenﬂy proved the remarkable theorem that if F(y)
18 snlegrable over every finite interval, and (6.7.1) i summable (C,1)to 0
Jor all z, i.e. '

X
Hm (1 - L?’LE)F(y)e—W dy=20
A—h) A A .
for all x, then F(y) = 0 almost everywhere.

This theorem is a ‘best possible’ both in the sense that one excep-
tional point is sufficient to render the conclusion false, and in the
sense that it is not possible to replace (C,1) by (C,1+8) fox ahy

positive 8. Thus _ O\
w . . N ’
f etdu=0 (C,1) (@#0), .\
-
and f uettdy =0 (O, 1+8)
for all . - : *'.\\:
-

6.8. Parseval’s formula. The abc}vé’results enable us to prove
still another theorem on Parseval’geformula. -

Suppose that f and g are given functions, Jf belongs to L(—0,w0), &
exists as the transform of g in sbjné sense or other, and Gis L{—oo,m).
We are unable to use Thefrem 35, since we do not know that g is
the transform of G, Wg:’h\ave, however, the following theorem,

TeEoREM 121, L?t\\f(x) be L(—o0,00), gz} sntegrable over amy
finite inferval, and, et ' '

A
A\ A S
g )= aim _J; o) (6.8.1)

for all .;E}aund let Glz) be everywhere finite, and L{~0w,0). Then
(2.L.1 holds.
“ e convergence of (6.8.1) may Jail for a finite set of values of x,
ovided that glx) -> 0 qs z - +00.

For g{x) is the transform of G(z), by Theorem 120, and the result
therefore follows from Theorem 35. '

f).?. Another uniqueness theorem. We shall next prove o
umqueness theorem of a different type, in which (6.4.1) is not neces-
sarily convergent, but in which there is an additional condition.
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TapormM 1227 Let e a(t), e vb(t) belong to L{0,o0) for every
positive ¥, and let

Uiz, y) = f{a(t]cos wt+b(t)sin xlle v di

be bounded for y > 0 and all x. Then
lim Uz ) = f(z)

exists and is finite for almost all values of x, and

A .
aft) = ;1 lim (1 . ]“”"'7‘) Flz)oosat da,
—A

' A ' : AN
bty = & ilm f (1J§_|) fesinatdr, O
= N
for almost all values of &. : \ O
Let D(z) = j {al)—ib() Vel dt

be the analytic function of which Uz, #]¥ 1s\the real part, and leb

¥(z) = exp{—®(z)}. Then [¥'(z)] is bounded above and below.
Hence, by Theorem 94, W(z) tendsg to a finite non-zero limit for
almost all z, as y — 0. Hence d)(z} tends to a finite limit for almost
all #, and hence so does U(wry} Lot the Emit of Uz, y) be f®).
Nowifory > 0,9 >0 {W§ '

1 3 N 1 3 | qcosa:t
______ T —,
(£—~x)2—i— re L = ..J" ““"“ | i
\:\‘ 1 o “ygbt dt o —nﬂnﬁ—
Q7 ta f A e

I} —a

\m;\: _[ e~{g()e-cos £t-+bit)e~"sin £t} di = U y+n)
0

the inversion being justified by absolube convergence. Making
y—>0, .

1

Ul¢, Z_J._. _ﬂfmd:n
S

by dominated convergence.

4 Verblunsky (2}
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Chap. V1
A

eVa(t) = 1]m:l (1—--];-!)'0(1:, ylcos at dx
. 1_ X 3
= ;Pm deg f Uz, y)eos xt dx

{6.9.1)
o ¢
for any positive y, for almost all values of £, Now

f Ulx, y)cos:ctdx _f cos xt dx f (x—u)2+ — f(%)

=] . '\’:\
d Yy cos xt O
f ) (:v-@as)"*i-zﬁd:c \

dy o\

i

ﬂ!"‘

\
27%G

=}, f eé)+f( —u)} du f (5 Sy

x~u)2+< T o
K\ .

(ff ff+fj) 101;+J'2+J)

W)

o
"

J {(w_u)”+y2+ m+-u)§+ }msxzdx

m

\\ f {“a;:;&—)éq_-—-écos 2t de = ge—¥cogut.
- . \'
. ® oy = ”‘f{f(u)+f(~u)}cos ut da, (6.9.2)
A
Ag‘“ﬁ) by the second ean-value theorem,
."\Q‘ ; 3 o0
m\' 7

\ }

yeosxf

Af\
o

£ _ Y
¢ (utépqy?

y cosxt
E‘u)"-%y*
and alsg-

i @ -u)2+J
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Hence, if Ifle)+f(—w) < M,

wf onr F 17 - ¢
el S - de L= ¥
<2 e 5 | i |
0 : o £y
M 2 M
= %_w(arctanf —au"ctang)-1-T(a,1~ctm-1?1?_jr _&rct&na A My,
Also, if w > &,
£
f _yoosat a0 2 Y
(e 4u)>+-2? t w2yt ‘
e N\
E N
4 cos xf 2 i O
_ YO dr| £ 5 —
'J e o R I e B
and also < RO
as before. Hence '.{\"
L em | oM b
L] < =5 ¥ il YN
A ; f’ifaz-l-yz du -+ ; j (u-—-f)s@w + M .[ dau
£ £y £
2M (= & eM{z Sl '
=——l5 8 (T axcban |+ Mavy.
e ) g e

~ Let 4y, 9,,... be a sequence Qf'"v;aiilues of % tending to 0, and let
E be the set of values of ¢ for which (6.9.1) fails for any of these
values of . Then Fis of :m‘éiasure 0. Let t be a point not in Z. Then
we can choose y = yn\éé”émall that the contribution of J, and J;
t0 (6.9.1) is < e for all\ > 1. Having fixedy, it follows from (6.9.2}

that & N ;
6‘”‘@({1¥~"e—w__li f dé j (f(u)--f(—uloostut du| < ¢
RO Y il A "

O
for A sufficiently large. Hence
PR

~O A : _
N e = }\im"li dt J. {(fu)+f(—wjcos ut du.
—ar TF.
0 0
Similarly we can prove the corresponding result for b{t}).
In this section we

6.10. Special properties of transforms.
ine transforms.

consider some special properties of sine and cos
Trporun 123, Let fz) be non-increasing over (0, integrable over
(0,1), and let f(z) -» 0 as x> co. Then Fz) =9
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Hor w - B4 Dafe

Bfe) = J & fﬂz)}smy o= [ 02 [ swwnea

niwie
This is a series of alternately positive and negative terms, non-
increasing in absolute value. Tts sum is therefore > 0,

THROREM 124. Let f(z) de o bounded function, which decrenses
steadily 10 0 as x—>o0 and is convex: downwards. Then Fz) is
positive and belongs to L{0,0).

The conditions imply that Ji@) is the integral of S'(z), which is
negative and non-decreasing, and tends to a limit at infinity; and
the limit is 0 since f(2) is bounded. We cap now integraté\Fotrier’s
cosine integral by parts, and obtain : AN

0=~ [ [roninegg®

and this is positive, by the previons theorem,\Also we may now take
% = 0 in the analysis of Theorem 6, and, ghtain

2 >y ¢ : \ ¥
B [ mwaZin,
{0 RS
Hence F(z) belongs to L(o, oo) '

Neither of these theorems is true for transforms of the opposite
kind, If fx) = 1 {0 S, 0 (x> 1), then

SECEW(cES

which takes bptl;éi“gns. If f(#) = e+, then _

6.11. Tt is not quite
F(x) 18 not integrablet
there 18 @ function

easy to construct a monotonje f(z) for which
over (0,e0). To do so, we first prove that

) =§le sin A,

T For a similay result for series gee 8zidon (1)
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with b, > 0, 2. b, convergent, and
1

divergent.
We have :
1 1 pe 1 n—g
f 1N g f bulsin), 2] f b,sin A, z| X
1h X 1A, T 1 r=1
1 7]
. J' IS b,sindz ilf e T d TN
1y Rt O\
Now A : 'S
J,=b, j Y g > 4b, Jogh, N
1p-t n=1 ’\
JE =< f b:- ?‘v d = z b,,?\,,
= GRPN
1 L &
= da: ..\:o
gy | ) b,.
h< | D by =labz,
1 y=n+1 ol

Hence J, << 44 if b, = k= with .a,;f‘i:ﬁfécienbly large k; and J; -0,
L=o{f)ifeg A, =1,and % _
)l&i:: 2(11+---+)'u-im‘n'

| RS
Then Y \\J‘ ng@ dr =0,
) X
Y 1

the required resgul‘tj,\ / : .
THEOREM }25} There is @ function f(z), continuous and steadily

dec?‘mﬂ‘ing\tq\ﬂ':as ® — o0, such that Fix) does not Bbelong to L(0,c0).

We fitst obtain the result for a non—increasing function. Leb
ﬂx}":s:}"n in (a,_,-8, @,~—5), where ¢, >0 steadily a,-nd a’r}}cﬁ
Ste\‘*dﬂ}’a and 0 < § < 1; and let f(z) be eontinuous and livear In the
remaining intervals. Then, taking a,+3 = 0,

) o dn—8
JENF) =Y ¢, j cos 2t dt +
=1
g1+ 3 - .
(cﬂ:‘:ﬂﬂ)ﬂ’“_ﬂ]ms ot di

- Gntd
+3> {%(c,,+cﬂ+1>+f 3
ay—8

n=i
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ain(a, —8)z—sin(a, _,+8)z

-:Zwr.:,,l +

n=1 d
- sin(e,+8)z  sin(a,—5)x
+Zl[cn+1 ( x —Cy " —+
-f-%}%’;—*—l{cos(aﬂ—&x—cos(aﬂ—[—
8indz < .
=53 Z (¢y—c,4y)8ina, 2. ~
ftm]
By the lemma, we can choose ¢, and &, 80 that ),
I o S
f Z (C“—-Gn+1)8in &, & “T;'}‘.

g 'n=1

is divergent, and then so is [ 1Fx)|dw) since sin 8x/(8z)
z-0, ’ \\
We can plainly construct a

f{i@&dﬂy decreasing functic
having derivatives of ag many“orders as we please, suc
f(z)—g(z) belongs to L{0,00), Then the cosine transform of Ja

is bounded. Hence the psine transform of #(x) does not be
L(orw}' & N\

6.12. Under s;@iial conditions F(x) and F(z) behave asym
ally like & Power of z, either as z -» OT 88 -0, or bot]
two aimplegt\f}leorems of this character are ag follows.+

Tnno;sx'n'ws. Let f(z) = z-2§(z), where ¢ <a<l, and
of bo;z\nded variation in (0,c0). Then

S\ Eiz) ~ $(+0) A/(E)F(l-—a)giné,mxmq > c0),

¢ “\ X Ffz) ~ ¢(m)J(§)P{l—a)sm bmazxt (20,
F,(z) satisfies similar conditions with o

We may suppose that ¢(z) ig
Take the cnse z - o We have

in bra repluced by cos &
positive non-increasing in

Vi) Fz) = J’ £-d{t)cos 2t dt

1 Titehmarah {9).
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= go-1 j w-d(u/r)cosu du
0

~ xrx—l( f . f) = ze-YI 4L,
o A .

By the second mean-value theorem
A
1= 4{) [[wreconu du = 067
A .

uniformly with respect to z. Now, for a fixed A, 4 ~\.

j{¢(+0) — plufx)pu-cosu du = {$(+0)—$(B/z)} J -=wwdu
= O[p(-+0)— A/ = o(1),

and
$(+0) j u~cos  du > ${-+0) f u-oonu du & S Jp“(+0)r'(1-a)m ima.

Hence the result. Similarly in the oagy 2A 0

TuroreEM 127. Let fiz) and i (x) be integrable over any finile
interval not ending at x = 0; leb 2+ () be bounded for all z, and e
f@y~z*as x>0 (x> 0{ Then

F{a:}\\\/( )F(l—m)sm imaze-l
a8 x>0 (x—>oo)s If}(x} satisfies similar conditions with sinjma
replaced by cos §qm

Consxde\the cage ¥ — o0. We have
Az

r}h;n"\ \/(%W)FL(:U) = ! fit)eosat dt = uj +a_!|j =IL+h
L= —f( )S}F—A J-f’(t)sm:ct dt

M.E

— O(A- )t -[ O(t-+-1) dt
Alx

= O{A—cze1).
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Let m(§) = max [2%(z)—1|, so that m(£) > 0 as £->0. Then
osf

Alz Alx _
I = J’ t-%cos zt df + J' {tof(t)— 1j~cos zt di

6 o
A

= go-1 f wo eog@é du -{—0{""3(%) (%)1* }
1]
« 3 I-w

= g1 f u*cosu du + O(zv-1A-%) +O{m(%) @) } )
U N

. ¢\
and the result follows on choosing A large enough, and thén large
enough. : A\

Similarly if 2 - 0, e\

6.13. Order of magnitude of transforms;"’%here are various

more or less trivial results; if (1-1- Je[™)f{z) belonigs to L(—c0,c0), the
equation D :

L 7ol
Fe) = 75 f e a

can be differentiated » times. T Follows that F(z), F'(2), ..., F®)(z)
are all continuous and tend toiat infinity,
If f(=),..., f®-U(z} are contintious and tend to 0 at infinity, and

J®(x}is L, then by repeated integration by parts

N ©

25~k [ e

Hence a:"*F(:q),{{ 6 a8 & > + oo, "

Similarly£(1 -+ [#[") f(z} belongs to L*(—w0,00), then
,:§ : Flz), ..., Fo-dg) '

are .Qc\ahiﬁnuous and tend o 0 at infinity, and FO) ) is L —a0,00);
and \eonversely,

\Other results have heen given in Theorem 26,
The idea underlying the following theorem is that both function
and its transform cannot be fog small at infinity.+ The resalt is
THEOREM 128. Let f(z) and F{x} be Fourier cosine transforms, and
let each be O(g-12) g4 T->c0. Then
f®) = Ef@) = Co-tor

t Hardy (18}, Ingham (1), Morgan (1}, Paley and Wiener, Fourier Transforms, § 19.
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We use the fo]lowing lemma.

Levma. Let ¢(z) be an integral function, $(z) = O(e®) for all 2,
and $lx) = O(e~*) for real positive = =0, o being & positive constant.
Then $(z) = Ce~. _ .

There is & constant ¢ such that

()] < o=, |plre)] < Ce,
where 0 < « < w. Hence, by a theorem of Phragmén and Lindelof,t

|$(re)| < CeEO (B << ), N
—asin(e—0)+asing_sin(0—f«) R '

8N o gin le L™
N\

Here we can keep 8 fixed and make a— 7. Then H(f)=> Zacosd,
and it follows that X e\
: . ) m\\.
3(e)] < Cemmreost (08 < A}

Similarly, we obtain the same ineqﬁality:ﬁ)p’ e < 8L 0; and -
also, by continuity, for § = #. Hence e®dlz) s a bounded integral
function, and so is & constant. )

To prove the theorem we have. 4\

where H(G) =

o\
]

T
£{) _\ J(ﬁ) a[ ftyoos=i do |

+8 3 .
By the condition on j’({}\t’his is an even integral function of z; and
if izt =1, \

Hence (4 Js an integral function which satisfies the conditions of
the lempa, with @ = §. Hence .
Q° E() = Ce®,
| Fjz) = Ce ¥,
and also the result for f(z) follows, by a familiar formula.
More general Tesults can be obtained in.2 gimilar way. Suppose
for example that - o

fiz) = O@te ), Fa) — O(a%e),

.{?ifz")l < K j e—¥oosh ot df = Ke¥".
. ;

f The sxgament is that of Titchmersh, Theory of Functions, § 571, with 5 = 0.
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where & is an integer. Then F(z) is'an even integral function; and

E@ < K | e~¥¢cosh 1 di
1]} .

d\®
= K (-—) f e~#'ooshrt di
dt
1]
~x[? zke*"' = Ofrkeltr")
T - o p
Let ¢(z) = F{+2). Then $(z) is an integral function; and, if G, N, Gy
are properly chosen, soig . (\) _

$(2) = 2 {h(2) — (ag+a, 21-... oy, z"-l)eﬁé}:}
Hence i(z) satisfies the conditions of the lemmaférfé g0 iz Ce-ts,

Hence F) = (au+alzs+...+akzﬂe)e{%§§'
and f(z) is another expression of the same f@.
N

.
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VIL
EXAMPLES AND APPLICATIONS{

7.1. Cosine transforms. SiMPLE pairs of cosine transforms are

1 (0,a), O (&), J (%)Sm;x, N (7.1.1)
cosz (0,8), O (&%), W;?}[@—;&%-@ Sliil—?gf—)}, (7.1.2)
ginz {0,a), 0O (e, 00), ﬁ{kﬂ%tﬂﬁ“%ﬂ], A

E 3)

- 2 1 . :. o~
e2, J(")'ﬂ_"l-l-xﬂ‘ N ,"sfﬁ.l.fi)

rm of any even rational f Qtlon regular

Generally, the cosine transfo
can be evaliated by contour

on the Teal axis and O(1/z?) at infinity,
integration; for example

x.\
N A

Another familiar process of contout mtegratwn gives the pair
v N (7.1.6)
, cosh mz \['(2‘11-)00511 1x :
Next < :

m

J()fe fcosmzx

' x

1 -
— —pat iz — it e-g(x-m)’dx
ﬁn fﬂ e dar = J(zw)e L |

N =N 1 F i

' NS —-— P o j e-%ﬁ’dg = CB_*“

..\3 ‘\/(2,”) . .

(by Ceuchy’s theorem). The cosine formula then gives 02

whence ¢ = 1 since ' > 0. Hence we have the paur
¥ e,

ATl the above examples belong to obvious L-classes.. .
Carapbell and Foster, Fourier

s + An extensive list of Fourier transforms is given by
ﬂT:‘als Jor Practical Applications. '
2
N

(7.1.7)
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‘Next we have

A F o AW
z -1 = {2 —by a4
J (ﬂ) f e~ ¥ cos xy dy J (m)t) f 7 cos 2 dy
0 1]

1
— _p—lz¥r
A’
by the formula just proved.
This is true primarily for real posmve A, ut it can be extended\by _
the theory of analytic continvation to all values of A with RfA) 2 0.

Taking A = 4, _ S
J(g) f e~ cosry dy = ehir’—tim (N
T £7)
0 . m'\ &
Taking real and i 1mag1na;'y parts, we obtain theMransforms
. RN
cos L2, (cos %ﬁ—i—}m 323y, (7.1.8)
mdt, o feokdat—sin fat), (7.19)

The Fourier formulae arising'¥rom these give examples of Theorem
11, case (i).

We define the Bessel.fii}}ction of order » by
J{x,) (— l)n(lx)l*-r»En

Th o &rTetats ¢ —1 - (7.0.10)
eﬂT L x'\:..f |
‘I %ﬁya) ey = Z _'_ﬂ (1 gRpr—tyen &y
'"\;\,' _ i o (__ )RP(V+%)P(?@+1)

Ty S
: e 20y Dyt 1)
Hence we have the cosine transformsg

(I—a®p-3 (0<z<, o ( > 1)

1,11
1t Watason, The nti (7 ! )
n’,
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These belong to }_D2 if v+>0, and to LP Fr reSpectlvely if

ifp>4—w»v>—
In each case we can infroduce a IJarameter since the transform -
of f(Ax} is i e
. . )( iy X):

and similarly for sine transforms.

.7.2. Sine transforms. A simple pair is

e, J (-2-) 1—}_3 B '(7..2:14.'
N\

and, generally, the sine transform of any odd rational fuﬁctlon,
regular on the real axis and O{1/z) at mﬁmty, can be evﬁluated by
“eontour integration. A\
Other familiar methods of contour integration jive 'the P&H‘S

11 1 oM

— T D | 2.2
NI _ 1 & \/(2,,} ’ e:w(zn)_‘ ) T p ﬁ/{g,,.) | (7.2.2)
1 7
— . -1 7.2.3
sinh x\{(17) x\/(% Y f:a?nh{x\/{%w)} _ (722
The pair _ xe-3, \ xe~lz' : _ ' (1.2.48)
may be obtained by dlfferent@mon from: (7 1.7). Nextt
f‘*iﬂsiﬁ j‘m}os(l——x)y*cos{l—km}.!d glog +"”
y ¥
&
Hence we obtaug ﬁhe pair
§ sinz L oeltE .25 |
\\ z ' Em i

N®Y
If\;\% "} we obtain by partial integration from {7.1.11) the pair

Wlmatpd (0 <z < 1) 0 @>1), PTo—Pe-rhio
' : : (7.2.6)

We define the Struve’s fanctiony of order v by

& (—apgapenn (.27)
H"(x}_‘zr‘(ﬂ%—zr)f‘(wm—}-%) b= %) -

T og asin § 5.2, o \\rataon, §;0._4.__
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| Then

© (——1)“&':2""'1 :

1 ; .
J[0=tr-ainayay - 2 Wf sy
o .

(— l)"’l—‘(v-}—%‘)n‘ 2041
=3 2 (2n+ 1! P(v-i—n—f—%)

S Y Z P —hreintt

(n+%)I‘(v+n+\E)
' Hence we have the sine transformsg O\
(-2t (0 <z <1), 0 (z>1), 20K P H, ().
) o (7.2.8)

~ 7.3. The Parseval formulae. We obta,m smlple examples of
(2.1.4) or (2.0.6) by taking f and g rational fiinctions; for example,

let f(x) = 1/(m2+a2) Fiz) = VB7)e2jgsand similarly g, @,, with b
for a. We obtain Y

_ dz o L - _
B A ——— = —B3 - T _ e, 7-3°l
f {x*+a2)(x2+62) mfe " de 2ab{a-1b) @31
. As another type, lot f(:c) = ] (0 <& < a),0(x = a), Fx) = sinazfs,
and similarly 9’, Q. W]{h b for 2. We obtain
min{a, &)
f @m\h bzdx in f dx = jwmin(a,b). (7.3.2)

0.... a

Slmﬂarly\ﬁom (2.1 6) and (7.2, 5} we obtain
J:\log G-z b+m

log

“do = 24 f w dz — mPmin(a, b),
. {7.3.3)

We can deduce some of the familiay I-function formulae from
Parseval’s formula, Define I'(a) by

o

Na) = fe~mxa-1 dr (@ > 0), (7.3.4}

f Seo Hardy (3).
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and leb ®
da) = [a+tooszde (0 <a<l, . (139
0

fral

s(a) = j pe-lginzdr (1< t:‘ﬁ < 1. (7.3.8)
o

Then the cosine transform of z*-1is

[ e ) o=
\

Similarly, the sine transform of x#-1 isw=? J (%)s(a). .
: _ : OV

We can prove, by contour integration or. term-by-term integration
of series, that _ K N\

. ] - \,\ »

J. 1+x2dx = %11‘580 Jar (—l<a& Q) (7'3'.7) )
o
In {2.1.4) let flz) = e, g(®} = oL, We ‘tham

o

N

I‘()—-WJ.:G c(a)dm—-c(q)Seelaw (0<a<1), (1.3.8)

e.g. by Theorem 35 or Theorem 37 Slmllacrly, by (2.1.6),

Ma) = - f --—Ex@em) dx = s(a)cosec Yar ('0 < a< 1}
o D (7.3.9)

Also, by the abc\e rule the cosine transform of &7 J ( )0(“) 1s

'\w ' xl‘“--o(a)c(l-—a),
SIDGRS ml‘”" also g . by Theorem 8, it follows that
\ ' elaye(l—a) =17 (D<@ < 1). (7.3.10)
Similarly, sla)s(l—a) = 3n (0 <@ < 1) (7.3.11)
Also, {7.3.8) and (7.3.10} give
olaj(l—0) _. 7. 7.3.12
P@t—a) = “Lsman sma-.-r' ( )

In particular

- od) = V), s(3) = J§m), I =4 (7318)
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We have also obtained the cosine transforms
: ge-l, J(%)I‘(q)cos larze (0 <a < 1) (7.3.14)
" and the sin_e. fr#ﬁsfbﬁng' ' ' o .
K '.'J(f—r)f‘(w)sin%anx—“ (0 <<a<1), {7.3. 15)

7.4. Some Bessel-functlon examples From (2 1.4), (.r 1.11),
and (7.3.14) we obtaln

N . .‘\
f J(a:)x“—"-l do = J( )g (_"?I",?ffj; f (1=t dg
| _ Tayesier Do+ PTG ig)~
Z TG F]) 2p—add) )
g KT
= fip= la(fl)} | y (141t

Thls is & case of Theorem 37 if w \\-1 0<a < 1 (taking
fl@) = (1=a®p-i (0 < & < 1), 0 (& >)yand glz) — ¢—). Actnally
the integral converges if 0 < g < v43, 50 that the result holds by
analytic continuation in this vnder Trange,

S!mﬂarly, from (2.1, 6), (7. 2 8}, wnd (7.3 15) we obtain

IH {2)amr-1 g = J( );(_;?;%_‘}% f (1_x2)v Yt d

\\ g~ ”-1P(ga)tan§aar

I'p—ie+1) (~1<a<vi
%
As an exa@ple of (2.1.8) let —L <y < 0, (7-4-2)+
fz) 7\)‘(2/'1?)1‘(2v—[~1)c03vn-}x]-2y~18 Py — — z¥sme
by (1915), and B 19 | e
o “\ "9’(?) y(l——xz)w}/p(‘v_[_%) ”x| <1, 0 (&> 1)
N Gle) = |z (), o
by (7.1.11). Thenifz = 1, -
2 | eJ@sinaedr
— P{?v—}—l COS pm
- N/(ﬂ) 2""*{‘(3.:? f (1 —u?) 4 |g—g | -2t ggn({z—u) du-
(7.4.3)

W,
T Watson, § 12.24 (1). 4 Tbid., § 13.24 {2).
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This may be jusfiﬁed by Theorem 37, with f and g interchanged
and glu) replaced by glutz).
If z = 1, the integral on the right-hand side is{

1
s 32\ -2~ o — Me+iE 2
_J; (1'_"2.&2) i(ﬂf u,) Qp 1 du = ?(2]}-{——? (x_g—l)"'H.

0 < x<1,the integra_,l is 0; for consider
| (o) dun

This integral, taken round a circle of centre the origin and radius B,

tends to 0 as B — co. On reducing the contour to the real axis from

—1 to 1 described twice, and allowing for the change of valueof the

integrand at —1, @, and 1, we obtain a multiple of the above ixiﬁ:egia.l.
It follows that we have the sine transforms N

O 17 W . (z> 1), 0.{:'55\21). (7.4.4)%

Actually (7.4.3) converges for v < 1, and the reMt holds by analytic
continuation in this wider range. The fugetions belong to L?, L7 if

« N1
— <P~ (=} < v <O}
T 2v
| A\ (7.4.5)
From (2.1.6), generatized ag it (2.1.20), and (7.2.6) and (7.4.4), we

obtain, if 0 <@ < b, N

P> (= 0)
= -

o N\
| (ax)#Jp(ax)(éx.)H\J;(bw) dz

P\
I
N ab ) TE—w) a Tp—3)b

2 N [

bﬂ
whige\flfé lofs-hand side is 0 if 0 < b < a. Hence

P fan ba) de

0
eyt o), 0 @b (148)
T

The process is justified by L? theory if —}<p <& 7> 1. As
usual, the result holds in a wider range.

} See Titchmarsh, Theory of Funetions, p. 63, eX. 19. $ Watson, §6.13 {3).
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Next let

f@) = sinzfe,  Flz) = ydn) (2| <1), 0 (o] > 1),
and

g(@) = Jofx) (>0), 06 (z<0),

0te) = o [ dlapoosay dy + T f Jyy)sinzy dy

: 1 ' isgnz
T Jma—y W< ey (6= Dy
by (7.1.11) and (7.4.4). Then (2.1.8) gives ' \\\
1 1 e \
sm(a: —t) 1 e—ixt cosxt L1,
f ol i) pEm s ) Jam & o)

~A\V (1.4.7)%
Here f(x} and Q) belong to IPif 1 < p < 2.0

From (7.2.1), (7.4.4), and (2.1.6) we deduQe

A o
f o) e = ~/ ( )f a1 Ty —1ypa

1
u"‘* du 2T+
:—VJ ﬁ(a’u+1)(1 u)*’ﬂ T V(@R T
(7.4.8)%

Here the L theory anIies if p satisfies (7.4.5). The result holds by
analytic oontmuatmn ify > -1

7.5. Som;{mtegrals of Ramanujan.] Let

:n\:;' @ -
M::'N b= [ o R
Phén) o
\ / ‘?S(x'l*?"?r)—!—gﬁ{x—-iw) = 2 f g-imtt~izi go,
: it dm .
= 247 1, (7.5.2)

L i d

Again, by (7.1.8) and (7.1.9) the transform of e=im2* i (2)—Hetm 2,

T Watson, § 13.56 (4), T Ihid;, § 18.2 (3).
Il Ramanujan (2), {6}, Wataon (5},



15 E XAMPLES AND APPLICATIONS 185

and that of sech 7 is (27)-tsech kr. Hence, by {2.1.8),

w  He—wy_im - @
e “dar 4 ‘_;z&r_f%f J- eiw’—dzv

1
(ﬁ(.’L‘) = % : MCOSh %ﬂ du = £

—ag -0

cosh 7o

This integral is of the same form as the original one, and we can
repeat the process which gave (7.5.2). We obtain :

_ iz fim)r . _ilz—ial® . _im @
e ¥ Platimte o Glx—iw) = 2e 4 j gt =iz2 dy

—_3

C= .'23_%’5, :
_in ‘N
ie. | aplatin)eila—in) =2 *. 75:3)
Eliminating ¢(x—im), | . O\
A g I
(e eyl pim) = 2¢ 4 (1-¢ R T

and, replacing 2 by x—im, We obtain \
i iz? K7,
eF—id TN

Hlx) = m.~ » 4 (7.5.5)
Taking real and imaginary parts, w@ﬁﬁtain the formulae
v.:‘ ] wﬂ 1 .
® ' sin -+
cosmulcoENK 4 VR (7.5.6)
cogh Jcosh 3z
PR X |
\ N\ 2 1
A S coS—— 72
S[EnTuteossY g o (7.5.7)
Ay coshau 2 cosh 4
2\ 0

Similar \iﬁéé'g:rals with denominator sinh s may be evaluated in &
simi!ag\.\yﬁy, or deduced from the previous ones, a8 follows.  We have

m~\J
\ W

\ }

erru

du

e-—iﬂu’ —tTu

ot iﬂ). : cosh 7

]
B g~——p

= [ ersrw-sen(1tanh) d

qxt_im

— g | pimvsingutanhma due - (758)
o
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Now by (7.5.4) .

it ip i'rr. i%_ix- £
RN st Do S -
P(e+im)—e - sinh
P S s
= ki iz (_lfe cosh f}w).
- 17 sin uv '
Also nh 7 -er. sinh v o N\
Hence the second term on the right of (7.5.8) is Oy
e
L AT sinuw N -~
fe sin wa ufsmh A0
o KV
2% dv - v
= - d
| Ginh %vf \}nzmsmvu g4
\\
: )
= im ~r h
_ _l_e%ﬁhh { s’m(aw;%)d
T :“ sinh v
_ —~—h ety sma:y
2<l f sinhmy .
. {s 7
@ XN _faf
Hence f‘?a smxyd _'@hﬁ*e =
2@ sishay 2¢inh fx  °
. Y7 [ cos my?sin a cosh lx— 2/4
ie. 2O f WemyTeingy o . cosh dr—cos(z?/dr) 7.5.9
SO sinhay sl (09
NN o
nd” it ry* sin iy sin(e¥/4m)
i - i) 510
R J sinh 7y y= 2sinh’ 1" {7 5.10)
7.6. Some I'-function fo'rmulaeqL The formula
3w
(costye-2eiat gy . wl(a—1)
! F et )M Ga—gn @ >V
: : (7.6.1)

T Ramanujan (4), {6).
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may be obtained by caloulating

1 a2
J(w-i--—)- w1 dw
po» .
taken round the contour formed by' joining the points —i, ¢ by
the imaginary axis, and by the right-hand half of fhe unit
circle. :
The reciprocal formula is

; o i‘f‘_ L : _ 24-Y{cos t)ﬂ-—z S N\
J. (otinlGe—io) “Te—1) (|t] << 3m) O
= 0 (1] = drh
. S | LON (1.6.2)
or, putbing @ = at+p, @ = 2uta—p t= 1 L0
¢ _ e—iuy  {Zoos 1y)u+ﬁ—23;}e‘, B v
_.!; P(a—}-u)l"(ﬁ-—u.) i F(o‘+ﬁf'\fl> ~ (gl <)
- Y iz
' g & (7.6.3)
Here Fx) = {F(a{—u)]_—‘(ﬁ;u)}—l — O(]u|1‘°“'ﬂ} _ _

as % 4o, The functions F), f(@), related by (7.6.3) both belong
to L7 (p 2> 1) if af > BH'T < atB <2 they belong to L?, 74
respectively if p(a—i—ﬁ—\i)"i 1. In the latter case (7.6.3) is non-
absolutely convergent; this may be verified from the agymptotic
‘expressions for thed-functions, or by Theorem 59 and its extension
to Ip. e . ;

2\
‘The partlenlar case y = 0 is

. w\:..\’;:; r B du N . gtx-i-,ﬂi_ o . 7.6.4
Q~ _L FaaiE—e ~ ety T L. (64
Since :

sin maru/sin gy = pllm—Lime gion=3mi L 4 g—im-La i,

(7.8.3), with o = 8, gives

smrw T(ata)(e—u) [(2a—1) | (1.6.5)

J‘ sin mat du g8 (mod.d), ' (meven).
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The particular case o = n--1 (n an integer) is,

oy

© sinmae du 22n{n1)? |
[T

Again, apply (2.1.1) with
.

1
Flo)= )= L
A ==y ey L Rl v
Thgn,-by (7.6.3), if a+-B-+y+-8 > 3,

o O\
J‘ L dx . - y s\.
) TeFo)lE—oT+aI6—)
— i | 1 ‘ 2 a+;3+'y+8-é‘l§;i(cx—ﬁ-?+5)d
27 T+~ p+8=1) f (oo gy)ber i i
R e o '
Mt =Pyt s D@ =1y (6

using (7.6.1) again. Here ¥ and g are L3y 5 < 1fp < atf—L.
The formula (2.1.8) with the same functions and 2 = r, x5 = 1y,
gives ' )

3
ay
.

o g—tnz X " .
__l ot z)T{B—) (y+a'ag(a =5 %

T

B _ 1 & ea@:ﬁ) '
JEZRNCEY: %) y oy )"f (2 cos fy)=+B-%(2sin Ly)r+3-2 dy

N grimapy.

T A ATGe ey 0 (169)

In partiouiar;

'e) - CO8 1y 1 '
. w\‘ w N dx = —_——— . . .
9O J {I‘(m—}-x)l—‘(m——:t:)}2 4P(2q—~1)_{f‘(a_)}2' . (7.6:9)

Obher infegrals which may be evaluated in the safe way are
. Jr? e -
_——re———
RRNCE) R ooy e

_ 2u+ﬁ+y+5—aesmﬂ—a)r{%(a+ B+y+8—3)}

T TREEATG R Nas gy (1010
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provided that 2(a—p) = y—3; if a+B+y+3 = 4, then

cosm(z-4+f4y)
j Tt T(B—=)l(y+22)T (6—22)

1
~ ST ITE =A@y (o

If 2(a—B) = y—3+F, where kis 4-1 or j:2, then

-+

sinz(2z-+a—p)
ot T+ 22)1 %)

S ’\:\.
Qlo-y—3 ' v
T A 612
& Iy —a DI+ @1
T 3{a—pP) = y—38+-k, where L is 41 or £2, . .m"\'\'
JD“O - sin m(2x-+a—f) | N
T F o) T(—2) L+ 30—

it gatd- 4P(2a—;3+8-—2) K
4«rI‘{y+8 _1)T(3a4-5—3)
The sign on the nght -hand sa.de.“in each case is that of k.

We next take some integrals of a similar kind, but with I'- functions
in the numerator. Consides
\"

'(7..6.13)

T{a+x) i 1 0
" \wm T(B+x )gﬂdx ((a)< )

o

&,

. & e (1814
F{B—l—x}l“(l-a.—x) gin n-(a-l—a:) .
ow ! | _21:_ S —Lvr(ﬁm+1)tu+¢)
N Smaa) G 2zm§03

em-immﬂ)(aw)

. _ . = 4 dﬁ?
Hence I = 2um mZ: I I‘(B-%-w)r(l"“"x)

and these integrals are of the form (7.6.3), with ¥ = (2m+t113:;‘:1
HenoeI—O if t < 0. If £ >0, the only pon-2ero T 7.6.3).
which m = [¢/2x]; the value of I may thus be ‘obtained from (
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We can now pass o -

f P(a+x)r(ﬁ_x)em do  (1.6.15)
in a similar way. Thls is '

{ Tlats) e
P(1—5+33) sin ‘ﬂ‘(ﬁ—'x)

& Dt
= 2 m—a’ﬂ(ﬂm+l)(,3—-3:)
T z f‘(l-B—I-x ¢ &\
i 1(B) < 0. Hence (7 6.15) can be evaluated in terms of (7 6*12)
The above results may be used to evaluate some mtegrals mvolvmg
Bessel funotions, in which the order is the variable of mtegratlon )

MNI]

Using {7.6.4}, we have : \ ¢
3 () J,_.(B .
- \\
_ 2 (—Im4n p.+v+2m+2ﬂ aimpn
goz;) mlnl E) fP(p—]-:t:—}-?ﬂ—!—l)F(v——t-ﬁ—ﬂ—!—«l)

_ N (=t )”‘"’“ as""b"‘“ Qv+

= mZ Z Tminl 2.£'r+v+2m+2n F(.u1ﬁﬁ+n+l)
i = D*\ aEmipr—tm
= (#*i\)\—i-?‘—l—l) Z , ml{r—m)!
'=13\

T‘ﬁh}-v—kr—f—l) R

- 'n\w
. ’\w: +m(a} J_x(b) . 2({12—{—-b2}} .
) R R e ?l(ggibz}}ew]- (7.6.16)
oY T
Whirtionlar [ @), (0) de = ., (20) (7.6.17)

-l

- The values of corresponding integrals containing a factor e™* may
be deduced in the same way from (7.6.3),

7.7. Mellin transforms, The simplest example of Mellin trans-
T is
ors f@)=e=, g5 — D(s) (o > o). (7.7.1)
1 Watson, §13.8. '
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Here flz)e* belongs to L(0,c0) if k> 0; and §(s) belongs to
L ico, bi0) for B >0
Other straightforward examples are

L w<a), 0@za, o (@>0, (112

loglaje) (& < a), 0 @=a), @ o> 0), (1.1.3)

1 .
F—1 T(s)(s) - (f >1), (1.7.4)
g%ﬁg:x - T{s)lAs) o> b),_ (7.7.5)

where L{s} is (9.12.1). Here f(x)z*-1 belongs o L(0,c0) for k > Qin
each case except (7.7.4), when tisk>1. ' & \))
" We also observe that if f(z) and §(s) are Mellin transforms ‘50 are

#f(x) and Fls+A) and also fla*) and i‘{f(%) . This.e\ﬁgt:ble;_us to

introduce parameters in each case.

Consider next the integral \\
© Rt '\’ o
oA 1 F(S)F(G—S)F(b-"ﬂ y ' T(c) a8 ds 7.6
j(Z) - '2_11__% - ." ‘1—1".(6_‘__—“'—"_"'_8)’:' W -—'—"_"F(a)r{b)z ] ( ad )

' o ki o
where R{g) > 0, R(p} > 0, ¢ 18 notB—1, ..o and
o<k < rm{R{a), R()}-

Since _ & _
I‘(s)l"(m-—s)]?‘(b—s)/f‘(ﬂiia)’= Ofe—H f[Re+>07), ool = roe¥,
the integral represent®yan analytic ¢anction of 2, regular for r > 0,
—r < § < m ez, whete 0-<® <1, it may be evaluated by
moving the lingyof integration away to infinity on the left, and
eV&lu&t.ing ’{li&\régidues ata=10, -1, .- We obtain
R \ ab a(a+1)_lJ(_!Jj~_l)x,'_ :

PR C e 1 ;ﬂx+_7(c+1)2!_

)
\

N — Fla,bic; —%) |
with the usual hypergeometric notation. For
the analytic continuation of this function (and ma
expressed as a sum of hypergeometric series by mov
the other way). We therefore obtain as Mellin transforms

- a—a'(o—s) T
f(:’.l'.?) = F(G,b; c; '—x)s %(3) = % f‘m

(0<o< min{R[a),R(b)}). (1.1.7)

- 1, f(z) is therefore
y, of course, be
ing the eontour
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Particular cages are

e e (0<e<),  (11y
i _ I's)Na—s) - R .
T ~w  (0<e<R@) @19
%log(l—{—x), _ u—__ﬁ; {0<<o<C1), (7.7.10)

1 1—a| I‘(s}{P(m:ﬂ}_z_ 0 o 11
e e I L N )_
where P, (x) is the Legendre polynomial of degree n. S
In each case F(o-it) belongs to L(—co,0) for the zahge of values
of o stated. In cases (7.7.8), (7.7.9), and {7.7.10} the integral

@ W
[fewrde (O (7.7.12)

S
2\

| N
can easily be proved to be squal to Fs) o
Another Mellin pair of the same type’is

21 1)— e \ o 141l _1g
8 0<o<R@t 1). (7.7.13)
Here the integral (7.7."1’5‘?3' may be evaluated by pufting
Y a = ey,
Another clags.,pf‘Me]lin transforms is

fz) — {g&?"aml (0 <w 1), (s} = T{s}I'{a) ( g > 0,0),

. (@ > 1), Pis+a) \R(a) >
& . (7.7.14)
A b 0<3<1, Ile—s)(1—a) - 1),
”\:\ ¥ {(z—l)—a_ (x> 1), T{(1—s) (< R(szfliz)

0O<z 1,
{E— @104z fz2— 1)} 22T (ja+{— )P —ds—ha)

Y ) Ml—s)
>, (¢ < |R(a)[+1), (7.7.16)
log| 1%, Ztanfer (—1< o < 1),

1—2
S (7.7.17)
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In each case f(x) belongs toa different analytic function for 0 << z < 1
and for « > 1, while x*-1f(x) belongs to L{0,c0) for some k. The
svaluation of (7.7.12) is immediate in cases (7.7.14) and (7.7.16); for
(1.1.16), put & = Hy+1/y). For (7.7.17),

1 1

42\ o g a® SR L T
f] g(.l___x)xs du = 2j (a:—t— 3.—{—...):::*' dz = 2(1+s*3(3+s)+'“ ,
] 1]

@ 1

o\ o Lba) g du_of 8 1
[t e aa = | gy T =2t s )
! u N

1 1 - )
and | Fle) = 4('1'2—_"_?—1-3—2--__—8-24—...). = Et&n lsm. \ O
7.8. Further gamma -function formulae. 11;*(2‘1 12) let
o) = 20w, Fls) = Dis+a), gla) = "¢ Gleh Ds-+b—1).
Then : v/ :

k-t . Ll AL

-2~1—. J Ta-+s)T'{b-—s) ds = j x“*jff*\la;“dx
7 o)
fe—iw e \4

— 2—a~b‘m§ulk;) g < k<b). (T8D)

T_his process and the following, j@ﬁés are justiﬁe_d by Theorem 42,
The result is a particular case of the reciprocity (7.7:9). .
Taking b = & and thei.lme of integration the imaginary axis, we

obtain - &8

[ D@ de = 22T (%) (@ > 0), (7.8.2)
NG
and there &J;@\’siii‘riila-r particular cases of the following formulae.
Next Ie%...: _ :
Sy P, e = Dot
O T (I I{a)

alld’so g, ®, with ¢, d for a, . Then

kt+iw
RS J 'wb—s)f‘(d+i:s)f‘(crd-—l+s) is
i ) BRI

£ Ppd+ D letebd=l),
N j T = Teta
L))

4352 o
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or, writing c—d—1=c, b =B, 1+d =y, a—b = 5,

k+io
o f Dla )T (B+6)Dy—s)TB—s) ds
Frad
. k—1im
F(a+7)f‘{m+3}f‘(ﬁ+y)1"(ﬁ+3) < b A :
T(at+Bty+8) ( <E~B<lky>kd>h,
Let (7.8.3)
- - ey Lb-+8)(a)
fE)=a(i—aptl 0<a<l), 0@>1), §s= Kot bt

and so g, ®, with ¢, d for @, 5, Then
1 RN
ds = f U1 EB o
I’(b+d~k‘i)f‘(a+c -1)
Fgt+btct+d)y
OF, Wntmga—"ﬁua, b=uw,c=38—y, d—-vhl

i
1 f Plata)ly—s) , P(a-m)rma ~a—y—1)
2mk T(B+8)T(3—s) I"(,B I F—y)[(F+5—1)
(-aaa —B < kyy>k8>k). (1.84)

Defining f(x} as in the Iast eXample and g(o) as in (7.8.3), we
obtain

1 R TJib+8) @} T (1 4-d-—s){c)
2m§k__ Ie+-b-+8)'(c-+d-+1—s)

—iw0

J‘ P(b—]—g)l"{a\}’[?d%—l——s)l‘(c d—14s) .
217%
k—iwm .

C § ‘ - [ 21 —aye!
2 "‘f (e o

hThe Qtegral canh be evaluated in finite terms 1f c=1—a Itis
thene

¢ \ 1
\f};ﬁﬂi(l__xZ)a»l do = 1 SO+E-1H ] . ha— 1 P{l{b+d+ lm“’
J _ ﬁél.y (1 y) Idy‘— 3 I’l{a_f_%(b_l_d_i_l)}

Putting b = % &= 1—f~y, d = y—1, we obtain

f H LD EEIN0—s) o, Dlatby)l(B+7)
P(Ifa—f~y sy 21— +3a—1)

(o <k~ < by > b Byl < k). (7.85)

T Barnes {1}; see Whittaker and Watson, Modern Analysis, § 14.5%

Rwo
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Another formula of Barnest is )
J‘ I‘{a-i—s}l"(&i—s)I‘(y+s)P(8——s)P( 3) s
21:"3 I'(e-8)

_ T@PETGNEATEITG+) o g
Pl (=B

whers atp+y+i=ce
To prove this, we use the formula
k4 i
L | B ds = j jfl(u)fz(v)fs(w) N
k—'m {
derived from (2.1.18) with n = 2. Take O
_ _ Tt )
fl(x) - (1+x)ﬂf-+5’ c(“'51(‘9) R(bc+3)
o ' I‘(ﬁ—l—s)I‘(——s)
folz) = (1+a:)3’ _ 32(3) -\v——f(—ﬁT—_“
filx) = x”(l—x)‘ﬂ’-‘ O<z<l) 8" @) W Dytole—y)
0 =z>1, 4 I'{e-+3)
Denoting the left- hand side of (7.8. 6) hy I, we obtain

Te—y) R 1 s~r-1 dudv.
F{a+3)f‘(ﬁ} J‘ j (1-1-%3“‘*8 (H*v)"3 (‘f»*«'l»‘)V(1 11‘»"’) w

Putting % = '1—- 1, v _\?}\— 1 the right-hand side becomes

f a:?+5":9k’”‘(1—w)°‘“(1—y)‘3 (1—z—y)=7 dedy.
T+ y<l . '
Putting y Kz(‘l——w) we obtain

lz?‘l(l—z)ﬂ’-l dz f xv+3—1(1—m)a—1(1~—z+zx)ﬁ-€dx

Th"\ inner integral can be evaluated in terms of D-functions if
at-B+y+5 = e It is then equal o
Iy+3) 1
| 8 1—-z)°‘
Hence we Obta,in (aty+9) (
T(Py+5) [ (o)D) Tip)Dle—y =),
P(CH-y—t-S) Pt 1(1 Z)E-}’ -1 go — WW

1 Barnes (2)— t Bee Titchmarsh, Theory of Funstions, Chap. I, Ex. 19
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and the result follows. The necessary inversions are all justified by
absolute convergence,

7.9. Bessel functions. In (7.4.1) wemay take & = s to be complex,
provided that 0 < ¢ < v--%. We thus obtain the Mellin transforms

v (), %_%% (0 <o <<vt3). (7.9.0)1
: g
Equivalent pairs are ~
21T(Js+ ) _ s .
J,(x), Tt (—rv<o<}), e (7.9.2)
(@) 2Mr(llp (&jv) (—2 < o <d%3),  (1.93)
—1 \
o - s-.}}:‘(%_a_]__%v_i_ } . ',,‘:\\
and xb],(x), P(%v—ls—}-%)& (—v-<3Z o < 1). (7.9.%)
Taking v = —1, v = 1 in the last me @'e obtain
cosx, 25"1\/17%%5 ’:;’I’(s}eos far (0 <o << 1),
(7.9.5)
sinz, 2814/ 5%+ 28) = Nslsindsw (—1 < o< 1).
& o) L (7.9.6)
xjcosvr—J_ (2
IWe define &x) B
By (7.9.2) the Mgaliin transform of ¥, (z) is
1 {2136t Lv) 21 (fs— v}
sinvm 1@,;18“, s P(l—;’—?ﬂ)]
AN 28&1”%8;3:12&3 EI"){ sin{}s— vy cos vr—sin(ks 4 dv)w}
N = =2 )T (fe— b)cosths .
Hence we have the Mellin Ppairs
V@), =2 s (bs—leos(ls—Ihr (] < o < 3,
(7.9.7)%
L), —2 -l () (3 —v)cos(ds—v)r

_ v+l <o <vig) (7.98)
T Watson, § 6.5 (7). % Ibid. § 13.24 (5).
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From (7.9.2) we also deduce
L@ @), 2rT(Es+ D (ds—by)sin jom cos bm
(Wl < o<, (799
L@)—J @),  — 201§+ )Tk — bv)cos Jom sin fom
W] <o<§. (7.9.10)
Again, by (7.9.1) and (7.9.8), .
2o, @) +i%, ()}

k1w |
= 2_1_2% 25—v—iI‘(}_,.s)I’(;_;s—v){sin(%s—v)':r—-iCos(.ég_v) e o
YIN . . e
- ki ) < \n\
1 E+im . ‘“\
— — %& J‘ 23‘-1’—11—1(%8).[1(%3.—-y)eﬁls—-y)nm—s CZS, “( ~\
k—do w’\'\.

and here we can (by analytic continuation) replageve by iz We

obtaint. S
m Y ~, N’
J+ o R .
R 21 3 -[ 23'—:!_.111 ("gé)li'(%s_dv]e‘"(h“"’x—*e—ﬂﬂ ds,
T Ny
ki a .

50 that we obtain as Mellin ‘Pr\dhsfénns
VK (@), 2s—v—5§:@sﬁr‘@s-v) (o > max(0, 2v)). (7.9.11)1
An equivalent pair i8() '
oK, (@), :Qm-_ep(%s}p(,%s_;_p) (o > max(0, —2v)). (7.9.12)
Hence we ve;i{\;r.\filat K (x) is an even fanction of v. For v==1%

(7.9.12) rednoes to (7.7.1).
Frorq\,(?’;éﬂ) we obtain the pair

(H ), pil(sftanisr () <o <ytd), (1.913)
and variants of this can easily be obtained in the above way.

To justify the inversion formulae in the above cases, consider e.g.
(7.9.1). We obtained {7.4.1) directly; the inverse formula is

E+iA
1y 2ITAS) o g 2, (7.9.14)
21‘!“.}_—;::9;; {AP(V__%S-*_]) x¥ :

t Watson, §3.7 (8} $ Tbid., §6.5 (3-6)-
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" This follows from Theorem 28if 0 < k < » -4, and from Theorem 30
if 0 < & < v+1. The leading terms in the asymptotic expansion of
x-vJ,(x) are of the form xz—-}a cosx+bsinz). Hence, in Theorem 30,

: dlz) = el=r-br, Yz} = o7,
and the crucial condition (1.12.1} is satisfied if k < »4-1.

We might begin by proving (7.9.14) by the caleulus of residues,
We have then to deduce (7.4.1). We have as t -0

121::1%1;:%‘;1}) == gt -Dimyittlog -tya—v—1 {1 +‘E‘ + 0(312)} A
The result follows from Theorem 29 if 0 < & < v. We\;{in also
apply Theorem 11; here . l:\
B = v-1, yit) — tlogi—z, N
and (1.12.1) is satisfied if & < »4§. ....:\‘

7.10. Products of Bessel functions. B {2.1.16) and (7.9.1) the

Mellin transform of z-+#-+J, (z)J,(2) is RS
% tiw N\
1 o I'(4w) \J I'ds—1w)
S Quw—pe=1__ 2ge-w v—1_ _ *Ag® @™y
2t Jm Ti+u—do) S Tahv—jorin)
and putting w = 2w’ and usmg (7 8.4), we obtain the Mellin P&“'T
L)) A& g ptrv—s)
et LT+ p— T Fatv—Bs)
&\ (7.10.1)
Slmﬂarly, by (7 0. 11) the Mellin transform of x—+#-vK LK () is

E+im

f 2W-P~2P(%W)F(%w_P)2s—w—v “2(48— lw)]_—‘(%s—-—%w——-}'}dw;

amL usmg (7 8.3), we obtain the Mellin pair

O Bt 2 D)l (s T (G — )T (o — ),

(7.10.2)

 From (;? d}and (7.9, 11}, the Mel[m transform of z~#J,(x}K,(=) is

1
— 210‘-:!‘21'\ r Y TR | F(‘%S - lu-’)
2m k:[m {%‘w) (w—v)2 MLy .,s-{—éw) dw,

t Watson 13.41 (1), (2), 13.33 (1),
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and, using (7.8.3), we obtain the Mellin pair

23—2v—21"(_i3)[“(18_v)
-2 [ — 4_ A :2'_ "
-2 () K, (%) (1t r—18) . (7.10.3)
By combining particular cases of (7.10.1), we obtain as Mellin

transforms
1 TEs)Pdsty)

TV A), LS.\ iyl

ADTAD) 54 Tds - U0 —39)

Other particular cases of (7.10.1) give the Mellin transforms
T (s =)

(7.10.4)

cos 2 d,(x), I‘{'(I__F%j:;gﬁ‘@:@:%)f‘@-k%v'ffr*‘ﬂ’ S
: {(7.10.5)
| ol G- O
sma:J,,(x_), ﬁ%_}_%y_gis)_rﬁ._% A%s)F(¥<-F’%V'%3)-
'.{\‘ 7 {7.10.6}

Combining these, we have

ki
—& i >
ein ] (a) = 51;% J. %; _Il(;_‘ E‘%%% ﬁ,i‘_jl}ummxas ds.
F—iw PNY;
As in (7.9.11), we may now replace @ by iz, and obtain the Mellin
transforms K
.I_‘(i?iﬁll(ii:i} . (7.10.7)
i1+ v—8)
Again, from (7.10.1).5,}13 (7.10.4), the Meltin transform of
TN ek
Qe F(%S‘PV}F(%S)I‘(%:_%E}

0 Tt T

in as Mellin transforms

e—<[ (@),

is

and hen’o\%}épla-(ﬁng « by iz, we obta
R ' [-‘(H—H}F{%SH‘(%—-%&)
VI T(gs+v) {282 a2, (7.10.8)
B LKt WaL(1Hv—138)

\_Bimilarly, the Mellin transform of e'“{:{.(x}+iﬂ(ﬂ7)} is

— 2% pins-wigos var D sS(s+lE -7},

o]
and replaving « by iz we obtain :
K@), 2""71"*coser‘(%-—-s)F(s—kv)_l"(a-—v}.
(7.10.9)F

The processes of this section c&
+ ibid,, § 6.51-

1 be justified by Theorem 73; for
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example, x'kx—#J#(x) belongs to 82if 0 < & < -1, and zo-kp-v ()
belongs to 82if 0 <C o—k << v+1. We can choose o and & to satisfy
these conditions if u > —4,v > —1. This would not include (7.10.5)
directly; for this we could consider first (1—cosx)J(x), 2%(1—cos x)
belonging to 22 if —2 < k < 0. We can of course also extend the
ranges of validity of the formulae by analytic continuation.

7.11. Integrals involving Bessel functions. We are now in g
position to evaluate a large class of integrals involving Bessel functions.
By transformation from (7.7.15), we have the Mellin pair &

(@17 @>1), 0 (x<l), L (”E??fj);()%:ﬂ;k?.u.l) '

™\

Using this and (7.9.6), (2.1.23) gives

hd E+im \
sinax 1 o1 s DET38) et B P (3 —)
j(xz—l)"+*dx_2ﬂ f 2 1?T§I"(1_—%s} 2’{‘@--}—%3) ads
D) T el
LR Y ) e1 1 A0528)
S ] e
E—iam "

| =27 —nelle) (—t<v<d) (7102
by (7.9.3). The formula is tht}}"’si'hefeciprocal of (7.4.3). Similarly,
using (7.9.5) and (7.9.7), ™

R—ieo

o

0

eosax O '

@ 1pa PRI e) (—f <y <.
i O (7.11.3}f
These processes come under Theorem 42 if }<v <} for
9\ '

'S M Fls) = 2518 E(%—_}h@a‘s = O(|t|%-})

N> T(1—1s) ’

Whiohs L if k < —3; and w2 1)+~ is Lif — 3k < » < 4. The
xesulf can be extended to the fult range —% < v < § by analytie

Negntinuation, or we can use Theorem 43. For0 <o < 1
I

j sinwet-1de = O1)

1]

b
. b
and f sinpa'-ldy = [-—cosxm‘*-l]:-;-(g—- 1) f cosxa® 2 dx
i
1

= O()+0(lt)) = O¢lty).
t Watson, G_.13 (3. T Ibid., 6.13 (4).
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Algo, for o = 1—F%,
]

g5-1
[ ey = o0

if —th<r<3 '"Phe other conditions are plainly fulfilled if
~l<v<d By taking k arbitrarily near to 1 the result follows.
Again, from the Mellin pairs -
I'{is+v+i)

vl (ax), 2T R TIN (7114
o racw
- P Mp+1-—19) N\
2 1 P'_l, e i 7’1 ‘5
(22 4+1) STt 1) ( '\%\).
(transformations of (7.9.3) and’ (7.7.9)), we obtain . O
[ i f02) - R
j Gl dx |
1 ) \
k+iom : x:\\.o
- f goivg-sv-s DEE VAL (L9t i) g,
2ms FE—Isn  2l(e+1)
k— it W W o
. ptouticin .
_ e —— v"“. v._]_ R 11; ' 1-1 ¥ . d'sf
&l (1) R ()18 +5—)
Et+2rilsim .
R
@ Ky(@) g (1.11.8)t

= 2Tt ) N '
by (1.9.12). quéz; the %(s) of (7.11.4) i8 L{k—i00, ko) if
oy 1< k s dy—1; and w-k(g2--1)rt s Lif —2u—1<k<l
These conditions are consistent if 0 <¥ < 2u, and the result
o foll.é%swf.rom Theorem 42. The formula is actually valid if
1 .<\';:;< op+3. Tt can be extended to the full range either by
falytic continuation or by Theorem 43. '

he following examples can be obtained in & similar Way, and

present no particular difficulty 3

T T+ K
J’ e-ua(p? 14 da = 3;1?(@"1%1) ._;_(:i).,. (7.11.7)
i .

T Ihid,, 13.6 {2). .
: The corresponding formulae in Wateon are 6.15 (4) 13.2 (5),
13.3 (5), 13.45 (2), 13.6 (3), 13.6 (5).

13.2 (8), 13.3 (4)
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@ 2VF(V+%)

f e-uva(a‘:}x" dx = W_E_W&, (711.8)

’ | (=748
o 14-a2)—qlv
f o2 () dor = M{/’H%E)L}’ (7:11.9)
1]

m , ay _ al
' nf J,(ar)e b7+ dy — Gyt lalih (7.11.10)

@ . ) 3

fefg;(%}e_bz‘dx = ;Tie—a'fab]y(g—b), (:Ilhl)

H . o\

o 2a)4(2bP T (u+v+ 1)
[ Rulatig o+t — (—--)(—;2 __l)_b_a'j(@ii+v_+2_".'."f~:) - (T1112)
8 e\

¢ Jfaz) - 5 “\ 3
J ;/(:1:2——1—1_) dx = Ih(éa)K}{(;}a), | (7.11,13)
o0 ’x;‘\

@ faz) o g T(@)K,(@). (1.11.14)

C EER T T Ry
A more delicate example is

ELimy

f Tfad, le) dy = Lo 27TGs 1) 2Tt fv—ds)
1]

2y Tlv—fs+1) T(vtds+1)

o) \‘ kg

- ;’.._\L 2 s (> —)

< 2’”}‘ sty S

AU =@ @<a<, a=1), 0@>1).
N N - _ (7.11.15}}
If & 1 this may be justified by Theorem 43, with
:n\:’o - N o
O x(€) = [ J a2\, (x) dz.

S

The conditions may be verified ag in the proof of (7.11.1). I
@ =1, x(£) is discontininous at £ =1, and the method fails to
evaluate x(1). We can fill in this case by proving directly that
X(1) = Hx(1+0)+x(1—0)}; or we can apply the method in the
opposite direction, which gives the whole result, but with more

'+ Watson, § 13.42 (8),
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tedious details; or we can write

o

[ o)t = [ e e 2710 =
o 0

——[#na mw)[ <

g0 that J. J(x),};ﬂ(x) dx = (v+ 1) j v+1(.’.\':) dz. N

The last integral is 1/{2¢+2); by taking v=p, 8 =\2;1,\ in
(7.10.1). O

* As an example on (7.8.6), we have, by (7.9.12) and,{fif.i'(kS),

@ ’..,z\\'

j oK, (22)] (@)K, (z) dv

b 11 Etim \*\\\“
e | Ts—hem DB
i S T A g,
XTI
1 1 1 —1) i "\
= 1“\’{3 -2}1“}'1)1—‘(3 +ip+-HX
. 1’\°Q D= )TE+IT(=#) gy
; XTI+ +s)
T‘(i—’&w)“[‘(ﬂ’*p)f‘(v-%& 3 Dp+i45e) (7.11.16)

- O D@ o TG — )
From {A7.11), and (7.11.4) with v = 0, we obtain

) 1 . 1
N (1 (1427 L, 1(1_:: )xuﬁ]{aw} dzx

IR T A T A o)+ g ds
= o | PrGo  wG TR

k—iw . :
JeA-ico

N U (n—}+39) %-3'138
21T’£{F(n)}2k_J;m 24 {‘”’. 3 | } B
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Bt n—144w
o _,_._1— 28!_2"{11(%-8')}2(&‘“3'__2"‘2“ ds’
O 2mi{D(n))? . 2
. Et2r—1—iw
(Ja)m-2 7.11.17
T G

7.12. Some -non-absolutely convergent integrals. We have,
by (7.9.5) and (7.9.6), the Mellin transforms

cosz, 1I‘(is—) cos (r12.1)
x \a 20 R
KQ
Sina‘:“, ll—‘(f)gﬁliﬁ_ N\ (7-12.2)
. . a \x 20 A\
From (7.12.1); with o = 1 and & = 2, we obtain{ ~\
i . Etim "’0\‘\"
f cos 2® conax dp — % f I{s)cos dsw P(?z«lﬂ%g)cos Im(1—s)a-#ds
o ki AN
btim ¢
1 7 1 ~% dg
D= i f 28-1:3-?@3)005 4.1:-(1~—s)a:
k—iw ,.'.“ .
=}t cos Ha= a2), (7.12.3)
by (7.12.1) and (7.12.9) with'w = 2. Similarly,
f Bin’x}aos ax dx = Yntsin Hr—a®). (7.12.4)

0 L
\ .
The results alre'eq}ivalent to (7.1.8) and (7.1.9). The process 18
justified by Thféxrém 39, Asin §7.11 we have

O
(N

M
~ fx“‘lcosx dx = O(|t])
for al}Md . Also

A

. \’ g : a1 ta+1 ji
~O J o de= [ + [ 4 | =sta+d,
N\ A ja-1 wtr '

{(with obvious modifications if X ~ $a—1 or p < {;a—;—_ 1). Plainly
S = 0(1); and : .

W

y ¢
dsin{ax—q22) i .
J B ——— e 2 - 0 ].
3 2 5 f dsin{az—a?) {1)
e=}at1

z={g+1
by the second mean-value theorem, Similarly, J; = O(1). The con-
ditions of Theorem 39 are thus satisfied.
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Next, combine the cases a == land a =3 of (7.12.1). We obtain

- E+im
j coszbcosax de = == J F(s)cos 15w D{—4s)cos §n(l —s)a* ds.
] k oo

T~ = o PET s+l s+ O~

= 2 PG+ Bin (1)

We thus obtain
7 A
N 2 AN
i .f 39-4(1-1-2 cos Jr(1— )T GoIT (o + Do~ 5. S5
o ki ' AN
In the first part put s = 8" We obtain ,':: L
. Fho- oo \
161 _f PR NN C TR ) R AN
$k—iw ..\ &/
3k +im \9;
(N[ Ba? -8 ar
- . RITU LTSRS aTE FUE DL SEtps r = 2 g I2(a)),
o | TGO NANTESC
#h— —fe .

by (7.9.12). In the second part. ;put s = 3'—} We obtain

§e+iLiw

” — i’ !
8 T-, 33 Bllké\qg‘g ’1_‘(‘18, -ﬁ)l ( 8 +l)a i +1 ds
ik+ }—'iw
\ ﬂ- i L §"SI 3 I %’3,+‘L 2 ﬂr)

,.;&N; “"“w {2200

Q’\(?'Q .9). Hencet

j cos 28 cos az dx = ‘”""' Tl (2(3a)t+J{200 )*}}+—-Kg{2(%a) f).
° (7.12.5)

Simitarly,
D
j ginad gin ax de —
1]

; | o . 3
TN Ay J 02 a,}i}]..-.-—-Kg{ﬂ%a} }
s m[J%{z(g,;a) 3+ . 20 | 6_ 712.)

+ WatsoD, §64.
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The process is justified by Theorem 39, as in the previous case,
We have

4 #
J 2*-Leosgr® do == i—j gle-Loosf df = O([i)
. . by
for & < gfa < 1, ag before. Also the integrals

I cos{ax4-a°) dx
0
converge uniformly in any finite a-interval.

N
Again, R
: . ki SO\
a? 1 ' : ‘2% ~* AN
S @leos— = — I'(3)eos temar -t —) ds O
o 2 a \ e
k—in “( '.‘:
1—v— k-t—iuo .
= - . F(l-—vwﬁs)cos ,,1-;(1_-,.,._\) a—2+2v+29m~s ds,
)
1-v—k—4m

Usmg this Mellin transformation and tlmff{@} cosz, we obtaint
« E+io

fcos % cos-;w“*l e = 5}& I I‘[s)cos Esw1"(3—-:;)0::05 %w(s—v) atv-2eds
1]

K-jo .".u:
1 2k—2ptfw ’»;:'.: .
= 8 T 18T (38" cos davt-cos Jorls’ v} a5 ds’
’ 2k — 2y — iwx'.‘,\

= cos %ﬂva"h’»ﬁa)-i-;—aﬁ ' (20)—J(2a), (7.12.7)

by (7.9.12) angl {2:9.10). Similarly,
w0 x’a\

J.Smxsglva:"“i dr = cosim @’ K (2a) — T__{]‘”(za} J,(2a)}.
] Y

(7.12.8)
The\;[n'ocess may be justified as in the previous cases.

\ 7.13. Laplace transforms. Simple functmns flz), $ls) con-
nected by {1.4.1), (1.4.2) are

1
e . 7.13.1}
' s+1’ (
$
cos , 2 7.13.2)
SE—I—']’ (

T Wataon, § 6.24.
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713
inw L 7.13.3
I, EXR {7.13.3)
e - T, (7.13.4)
.l-e—'l.l[m J(E) 8—2‘\!’3' . ) (7.13'5)
7 ¢
oo 2T (-+3)
The pair zvd(x), Tﬁﬁﬁﬁ (7.13.6)
results from {7.4.8); the pair
(W ts)—s” 7.13.7)
e e (.13,
from (7.11.9); the pair | O\
J{=)/, (Ja+s)—sfly ; (1138)
by integrating (7.11.9) with respect to &; the pair "~: ™y | '
2t (), g-vg-v—lg-1n o\ {7.13.9)
comes from (7.11.10). _ A
Writing :
smu
\/(2 ) i «/( ) (7 12.10)
we have R f;v
[ oot - I_,_w“’é’“f“ 8 g
Je Ux) dx = T %5,; duJ.e
v \h prl
Foost e gy = L[ _f_.)‘?, (7.13.11)
«/(2()8 o © du = (\](1+32)+-1,—{»—32
©.g. by (7-@ 7) Similarly, we , have the pair '
1 1 s\t (7.13.12)
~O e (\f(1+s’) 1+s)
Defining S(z) = 142 21 e, (7.13.13)
we have | " i
J ) de = J' e d 42 21 I g
a h RE20
= 1
L 1 1.13.14)
E 2 ﬂgﬂ' Jstanh A8
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In each case the real part of s has to be greater than some lower limit
—in fact 0'in all the above exarmples.

7.14. The formula {2.1.20) gives a number of interesting exampies,
The simplest is obtained by taking f(x), #(s), as in (7.13.4), and
g, ¢, with g for «. We obtain the familiar result

x o #_1 1 k+ie . 4o
f yriE—y)dy = o= f (IT'(B) g ds
o k—teo
. ~
_T@TE) g \
W (2141
= TGeHA N
The formula {2.1.20) is equivalent to Parseval’s formula for the
Fourier transforms A\

flzde ™ (x> 0), 0 (x < 0), (2n1:{¢(k+it),
and similarly with g and ¢. Here the e-%* makes problems of f and
_ g at mﬁmty trivial. In the above case @B L? theory applies if
3,8 > 1. The result holds for «. % 0, f > 0. The extension
may be made e.g. by Theorem 38, A\
The following examples are easily fustified in a similar way.

Take f{z) and ¢(s) a8 in (7 13.6), but with parameter y, and g, #,
with v, Thent 3

j ¥, (y)(xhy)w Sy dy

\} K4 idm
f BTt P4 e

\ =3 - = A ds
N> =i
~C _ TpHHre+ D
AY T et ™ el (1.14.2)
The partlcular case = L, v = Ois
\ ‘, ) fgmyJﬂ(m+y) dy = 1(3;}‘ (7143]

0

A number of similar formilae demvable from this are given b}’
Waitson, §12.21.

The particular case = ,v=01s

fe%(y)Jo(-’chy) dy = sinz. (7.14.4)

1 Hardy (10), Watson, §§ 12.2-12.92.
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7.14
Similarly, {7.13.8) gives ,
- ket im :
LM (2—y)
f “&g_.'_{ir+ 7 dy = f { (14 82)—~sjivers ds
+v J +v(x) '
w {7.14.5)

Taking f, ¢, as in {7.13.8), but with p forv, and g, ¢, as in (7.13.7), -
we obtain

B 1 [ st —sew
f Hie— ] = rin f e e
2\ \
.!H-V(x)
. . (7 14.6)

Taking g, 4, as in (7.13. 7) and f, ¢ with u for v, we c{btam

[ rwe— ay = LR S SO PY
4 kdw T N\

-] [wu+sﬁ)~s}ﬂ+v+h-w<1+s’}*-ﬂ“"”+ Ty

= 2{ +V+1(x) +,,+3{:6)+ } (7 i4. 7)
The integral is expressible in ﬁm‘te terms if p-» is an integer; for
example . y,

\ o+ doo
f (), (x—ék)\\dy = f If? ds = sinz.  {7.14.8)
Jo—=im

A shghtly da.ﬁerenb type of formula is obtained by taking
\ 2
. i
f(m)\‘* B (ave),  gls) = We@(ﬂ?g)’
and g,¢ wi‘bhb v for @, p. Then'f '
{W @y oy~ dy

XAdim

” oy
arh exp(' & b—i—m)

2arb” Tl J{(ag-{-bg)x}] (7.14.9)

a2 1 The result ia equivalent to Watson 12.13 (1)
P
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Taking the same g, i, and the f, ¢ of (7.13.4), we obtaint

k+im ’
s 1 F(fx)b" b2
j y‘x"l(:r-—y)i'”efv{bs/(x_'y)} dy = o J. grgrtatl exp(-—‘—ig +m) ds

[} k— i
= B Dy,
From (7.13.11) and {7.13.12) we obtain{
z et o
S—y) dy = | i Q
CSe—yrdy = E +82} "
[ ke <O
= }{xr—sing), NS RN(ATSIY
. Etiwo "4 N §
@ . ) e
[{C0)Ce—g)= S} dy = f S
PN
kot e RS
! ! 3 s 7 - ;
=i —— —— le#ds'= 1(1—cosn), (7.14.12)
474 f (g 1_{_82)‘?‘?‘\ 3 )
k=i

and there are some similar formulae mvoivmg Jp and J;.
The method also leads to *ah integral equation| satisfied by the
function $(x). From (7. 13‘14) we deduce

‘9' FE+dioo o .
f ”‘*“y) =g | e
i
Now 72 ":i by N S
p O ds\tanh~) T 20 2vstanh® e
Hence\‘t’he right-hand side is
\ *-1-30 Et-ioo ’
W f -ds—-m i_}_ﬁds
,\ \,2‘”3 ds tanh vsf &
L-—fi':o
1 k-l gon ] 1
x
= 14+ |2 Yervds
T f tanh +s («f’s 28§)
Fo-oda
&€
= 14 22d{x)— f Hu) du,
/]
T Watson, 12,11 {1), i Humbert (1},

Il Due to F. Bernstein, See Hardy (10).
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® . ktim ” . E+ 1w s
%
i 9{u) du = — — e 8 — -
snee f ) i f Ftanh Vs Im f #tank A5’
i} [ k—{w

and the last term is 0, ag is seen by moving the line of integration
away to the right. We have thus proved that

fﬁ(y)&(x——y) dy = 1 20¥(x)— fﬂ'(u) du. (7.14,13)

&

{ \.& ’
o)
Ol
AR
. \'\ &
& >
O\
&
N
o N
»\\,\*
Q&



VIiI
GENERAL TRANSFORMATIONS

8.1. Generalization of Fourier’s formulae. IN the foregoing
chapters we have studied two formulae of the form

e = | ko) du | b fig) dy (8.L1)
0 0

2 . I .
for an arbitrary function f(z); k{xz) = J (;)cos x gives Fourier’s gosme

formnla. and k(r) = J (g)sinx gives Fourjer’s sine formula: There

are, however other formulae of the same form, the best. l\mown being

Hankel’s formula, in which R N
: k(z) = att (z). K (8.1.2)
There aze also formulae of the form- ¢
o w LIPS
fia) = [ Weou) du | Waaf) dy (8.1.3)
0 TN

in which the two cosines of Four,i'er:’s’formula, are replaced by differ-
ent functions, The simplest fortnula of this type is that in which

ko) = BTE),  ha) = S (). - (8.1.4)

As usual, (8.1.1) may,be written as 2 pair of reciprocal formulae
N\

\\ 9(@) = f F@)k(xy) dy, (8.1.5)

\:jﬁ fw) = j 9(w)i(zy) dy. (8.1.6)

A farfeion k(x) giving rise to a formula of the form (8.1.1) will
be called a Fourier bernel. The main object of this chapter is to give
an\a,ccount of such functions.t

) Suppose that we multiply (8.1.5) by z*-1 and integrate over (0,00).
We obtain formally
[ oty s = [ ot [ gyt ay
a 4] a
= [1@) dy | eyt de = [ fyyy— dy [ Ryt du
Q 0 0 L]

¥ Hardy and Titchmarsh (8}, Watson (2)-
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ie., with the usual notation for Mellin transforms,

G(s) = F{1-—3)R(s). (8.1.7)
Siﬁ)ilarly (8.1.6) gives .

Fls) = B{1—3s)R(s). {8.1.8)
Changing s into 1—s in one of these equations, and multiplying, we
deduce that RKESHR(1—s) == 1. (8.1.9)

We should therefore expect that a Fourier kernel &{x) would be in
some sense of the form O

oF fon,
I . N ¢
Bx) = — 5 ds, 8:1)10
© =g [ Sew i
[ ] gl
where R(s) satisfies the functional equatlon (8 1.9). ~‘ b
8.2. The condition (8.1.9) may also be expected bo be in some

sense sufficient.
A characteristic property of a Fourier keqle} k[:c) i that, if

kylz) = f () du, (8.2.1)
Iy '
then f ) ﬁ(@,dﬁf‘: (1) g ; §)< &) (8.2.2)

For if we put f(x} = 1\(&< x < £, 0 (z > £), in (8.1.1), we obtain
(8.2.2); and converseiy (8.2.2) leads to

X

k
I ) dy — f f) dy f )2 g
0 ] 4]

A - f h;ﬁ‘l da J. kuy)fly) dy,

from which (8.1.1) follows by formal differentiation.
Now {8.1.10) gives formally

¢+iw
) i . (8.2.3)
Fylx) = S f R(s)lﬁs ds. (
£~

Hence, by a formal application of Parseval's formula for Mellin
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transforms, in the form (2.1. 20)

) f tlo) 2% 4 f 86 ewpas 0> 0)

C‘—“!,CO

= %m f () =10<z<g 0@>8

C joo

Hence (8.2 .2), and 80 the_Fourie:_r formula, is formally a consequence
of (8.19). A

. 8.3. Snml&r analysm holds for the unsymmetrieal formula&ansmg

ftom (8 1. 3) If we now write O
BECE f auig(u) du, o\-’l'f D s
9(w) = f b)) 4 (8.3.9)
the rel&tlons between Mellin transform are
&(s) = (5(1_3)3(3), (8.3.3)
| 5 & < BU-5)$(6), (834) -
and, ehmmatmg &Fand G,
A R(&)Sj(l—s) =1, (8.3.5)

We may regard (8. Q as the solution of the integral equation (8.3.1)

for the unknown nctlon g{u), the ‘solving kernel’ h(x) being
given by

.\"3 et et im

> g1 o
:\@}H% f Bleer ds = - I gy O

c—iw

8.4 Examples. Before proceedmg farther we shall give a number
ﬁf\examples '

'\ 1) If (s) = 22 Db+ s+D) _
(1) 1 =2 o o,
then k(z) = 24 (x),

and the formula is that of Hankel; the cages v — —fand v = Fare
Fourier’s cosgine and sine formu]ae

o If —2 << v << —1, then

o) — (e
k) = {2 e)— T +1)}
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]
—_
p-4))

and generally, if —m—1 < v << —m, then
k(x) = w?{,fy(x} (_“:;_)_n__%i)?-}an}

! Mly4-n+-1){’
the sum being the first m+1 terms in the power sevies for J (z).
(2) Ity k{w) = ¥, (x),

then, by (7.9.7},
8(s) = — 27T+ dv-+ DT (Js— v+ Heos(fs— v+ {)m.
This does not satisfy (8.1.9), so that k{z) is not a Fourier kernel. But

(8.3.5) gives ~
(s v +-2)
— 95— Tt Iyt ygr, N
Sj( ) 1—1(% %8+a)ta’n(2?_{_,v+-})ﬂ- ".\“'\
It then follows from {7.9.13) that \ O
Mz) = otH (z). “

{3} There are a number of very general transfgmfnﬁtions, due to
Fox,I in which k{x) and A{x) are linear combingtiens of generalized
hypergeometric functions. From our present\\pomt of view these
originate as follows. \

Suppose that o) > 0, that p; and gy are any real numbers other
than negative infegers, and that &)

¢ = 061_‘15’1'.’ pat,
D i i o)
I ¥ 21— 18T (pot+ 16—
We deduce from the (-,Kl{ﬁlus of residues that

and let R(s) = 251

3 N CI O T G G
v o 3

/ \. = {}x}- 4 Folatg, pry P 4%7)
in the usv:@l“hypergeometnc series notation. If we now caleulate
$(s) fmm (8.3.5}, and then A(z) by summation of residues, we find

Whem h(x) = hl{x) +hs(x)y

hy(x) = sin(oq Pﬂﬂ-( Japet$-t F(l—oy+pp L= potpu P —§7%),
sin(py—pg)r
and hy(x) is derived from h,(x) by interchange of p; and p,. The
fOlmulae thus obtained are those of Fox's Theorem 1, in the special

1 Titchmarsh (3). I Fox (1).
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case p = 1. In the general case R(s) is & more complicated product
of gamma-functions of the same type. '

The case a; = 1, p; = 4, py = v+ 3 gives example {2) above, The
case o = 1, pr=a+1, p, = v-4a-+1 gives a more general trans-
formation found by Hardyt and discussed by Cooke.} The case
oy =v+§, pp =v+1, py = 2v+1 gives

M) = P Len e, M) = — e L)

a ftransformation due to Bateman.| The case oy = vta-+i,
o =vt+a+l, py = 2vr+a+tl gives a more general transformation
due to Titchmarsh.i+ Fuller details concerning these tra,nsfoylpegtions
will be found in § 5.2 of Fox’s paper. D\
If we take ' by
8(s) = 2o L@t 300, 13 (ay—$s)
P(b1+%3)F{52_12‘3)P(537~§‘5)’
where a1+t tag4-% = bl—l—bzﬁ—bs{
we obtain examples of Fox’s Theorem 2. Eoi%Xample, if
ay = 1}P«+‘=1_5V+§, dy — Jz“"“z‘n";%‘:lp’ g = 4,

bi=1 b= fp—lpth by = fu—Ppr
k{z) and J(z) are each combinationgdf two hypergeometric functions,
and ean be reduced to the formg\ ™

Im "
M) = i e eV ()~ )

) . \‘,{n. ¢ \ e d . )
M) = gm,mﬁ—% LR () (), ().
(4y If \i;(x} = {Y,(x)-k%cosaw](,(a:)},

~
then, by\(@.?) and (7.9.11), %i(s) is
2O Ga+ by DT G-+ DT Gs— b+ DT s—dv-+5).
AP+ 4 1T+ v — fs—Ja) x '
A% XT(s— 44— 30)T (34— s +4e)
In this case again A(z) is the sum of two hypergeometrie series. There
are two interesting particular cases. If v — 0,a =1, then

K(s) = — 223_1{2(%_8%@}2
' P§—1s)
t Hardy {13). 1 Cooke (1), | Bateman (1}, (2).
1 Titchmarsh (6).
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which satisfies (8.1.9), so that, by (7.9.7), (7.9.11),
ko) = ot {Tofe) 2 o)

is & Fourier kernel, If v = 2, . 0, then

g1 P(i—&—-l— ) 3‘“%
st = se-a( el bt

and R(s}R(1—s) = —1, 50 that
k) = —hie) = o)+ Kufo)]. A

The formulae in this case are due to A. L. Dixon and Hardy. Miach
more general formulae of a similar character have been obta.med by

Steent and Kuttner.| ,,f N
(5) If R(s) — g~uie-1) (a - 0), \‘
then H(s) = emite—*, '

2,
Taking ¢ = { in (8.1.10), we find that __{*

1 ] it }fi_.h —tilogx)'faa
Ifx) = ey f € cos(tlog;v) dt 2J(mx)e )
and A(z) is the conjugate “fﬁnction. The Fourier formula thus
obtained may be reduced by a'change of yariable to the exponential
form of the ordinary {c{ﬁmer formmula. It is

f (33) j e~ilogzupsa 7 Jf;u) gitlog uyda j (y;}
L]

\n
and 1fwe§ut a=1, and
=, u=el, p=2d, g(€) = edd'+itf(el),
\ ). . F L if d
we Gbtain  g{f) =~ | e dC eilag(y) .

—m

dy;

This formula is not included in our standard form, since the Jimits
are —oo and oo instead of 0 and co.

+ Hardy {17); see also Hardy and Titehmarsh (8}.
I Steen {1). i Kutiner (1),
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(6) If : R(s) = e®s ¥ (@ > 0),
then k(z) is a Fourier kernel. Taking ¢ = } in (8.1.10), we find

k() = qﬁ f cos{af’ttlogx) db
G

- e e el

(0 << I),
N

= \/( dog x)u(,,[ ---- 5% x)a] E>1 L3
by {7.12.5) and {7.12.6). ' O
(M I RK(s) = expliee-D} = exp(ze) (s = -g-:k’éﬁ):,
then H(s) = exp{—ie™).
We obtain . 3
kiz) = %T j exp(ieat-¥ df — ?dz%&u-—ﬂugx du

u

o' Z 2
...,.\\’

dv atr-t

_a:*J‘ _u(ye}iar)—alos::r _‘._;.1‘(‘-£Iog:c),

and hiz) is the conjugate, =]'
(8) If . o R =1,
then (8.1.9) is satls‘ﬁe\sl but the integral (8.1,10) is not convergent.

If, however, we regard {8.2.3), with 0 < ¢ < 1, as the definition of .
ky(z), we have \G

x“' 1 (z>1),
\* kl(x)“_' f To0 P<a< 1)

c'wo

Ifwe replaoe (8.1.5), (8.1.6) by

\ ' glz) = —ff(y) diy(xy),  flay = mf gly) diey(=y).

13
then our formulae hecome

1./t 11
g} = ;f(;)a fla} = 59(;):
which are plainly consequences of one another.

t Paley and Wiener, Fouricr Tronsforms, § 16.
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(9) In all these examples K(s} is analytie. Suppose, however, that

p=1 . .

o=}, and R 4-t) = isgni.

Then $, defined by (8.3.5), is —R. The integral (8.1.10) is not con-
vergent, but it is formally

] 1} o
_?:—" —it - ~if _— i 1 —_ ‘__'1___
2w\fx(j x—% dt J‘ x dt) % J sin{tlog %) 4t = T Tog e
1]

L] —t

the integral being symmable (O, 1). Our formulae become

0L IS e 01 A
™y Jey)loglay)’ 7 | Jeylog@) )

£ we replace  and ¥ by ¢ and 7, and interpret the, integrals a8

fley =

R

principal values, we obtain formulae equivalent toythose of the
theory of Hilbert transforms. ."‘}\\

(10) If R(s) = cobfom, D
then (8.1.9) is satisfied. The integral (8,1.10}1s of the same type a8
in (9). A formal application of the theorem of residues gives

A\
k() el

and we again obtain formglaé: of the Hilbert transform. type.
{11) We obtain fo;muifek of a somewhat different type by taking
: K @iy = et
Then (8.1.9) is; s@{sﬁed, and

m

9.\ P
(N 1 . 1 1 )
_ _ i —i Jf o= —— ——'tlo xr dt.
:‘k@ =5 J‘ eibg= dt = — «-’ma[ cos(t g

— a0

Fhe i"ntegra.l is summable (C, 1) if & # 1, and has the value
“‘(xlog*l')“%«?}k(log%)ﬂ w<z<ly © &>1
&

If % — 1, the integral for k{(z) diverges to infinity, and ky(z) has

a discontinuity, as in example (8). The formuls which results is

therefore 1z (2(] "

_ 1l JLE(_:_OE_@L_ () dy.
ote) = o (55) = ] "(Caylogaw d

0
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z=e%, y=en eMflet)=4¢), cHylet) = (g,
we obtain w

e = o~ [ T D gy
¢

The reciprocal formula is obtained by interchanging ¢ and . The
Fourier formuls, which results may be verified by using the integralt

R AR AN Caut S Y )
NEXBINEEwA L) A

(12) The kernels which arise in the summation formulag dbtained
formally in § 2.9 are Fourier kernels. For example, in ,t}i«p‘é.rgument
of § 2.9 we obtain 2 cos 2mx and 4K, (4nvx)—2m u{47;*\e§:vj} ad the Mellin
transforms of {(1—s) [H1—s)

OIMNC I
respectively. These functions of course aaiﬁis {8.1.9).

Note also that, if k{z) is a Fouriepkernel, so are +ak(az) and

AgtA-Df(ah),

@A < g« O

")

8.5. L2-theory. In the theoryof Fourier integrals we have proved
theorems of two kinds, theorems on convergence in the ordinary
sense, and theorems on n@n-convergencc. There are also theorems
of both kinds for general transforms; but here the mean-convergence
theory is both easiqr\an\d more general than the other, and we begin
with this. \J

In the first plate, we need only assume the existence of the function
f(s) on tl{g\'l:ﬁ)é @ = }. The equation (8.1.9) then takes the form

N KE+ORE—it) = 1. (8:5.1)

We might simply write R(3-+4t) = $(¢), and ${t)d{—1) = 1; but we

sh\a}} retain the previous notation to preserve the appearance of the
Mormulae.

We should now have formally

k(x)=§1?; J K it~ g, (8.5.2)

There is no reason in general to suppose that this integral wiil exist
T Wataon, § 13.47 (10).
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in any sense. However, the formula for &,{x) obtained by formal
integration will exist in the sense that

T

If, as in most of our formulae, R{s) takes vonjugato values for con-
jugate values of s, then (8.5.1) gives

IR+ = 1. (8.5.4)

Hence RK(}-+it)/(}—it) belongs to L¥—00,), the integral i
(8.5.3) exists in the mean-square sense, and k(z)/x belongy -to
L3(0,0). R
1t follows that our theorems have to be gtated in g,chﬁﬁ, not of
. k{x), but of kfx). For example, (8.2.2) is no longer significant.
However, the formula obtained by formal integration with respect
to x is ’

[ twwhen % — min@8). (8.5.5)

This integral is absolutely conve,pgénf. in the general case, and
(8.5.5) by itself may be taken as the basis of a Fourier theory.

The theory takes diﬁerer}t.?}'orms according to whether (8.5.5)
appears explicitly or nots Tho results may be summed up in the

following theorems. /N
THEoRrEM 120. }.@}R(évi— it} be any funchion of t satiafying (8.5.1) and
(8.5.4), s0 that\ R34
X b
belongq'%i*(—oo,co). Let k(x) be defined by (8.5.3). Let f(z) be any
functson of L0, 0). Then the formula
O

P

V o) = & [ b (858)
L

defines almost everywhere @ function g(x), also belonging to L*0,%0);
the reciprocal formula

for = & [ s 5 (857
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also holds almost everywhere; and
[y de = [ {gla))* do. (8.5.8)
0 ]

TaworiM 130. If K(}-+if) satisfies the conditions of DTheorem 129,
then k,{z)/x belongs to L2(0,00), and (8.5.5) holds.

TrEoREM 131, Let ky(x) be such that k,(x)/x belongs to L*(0,0), and
lei (8.5.5) hold for all values of w and §. Then the reciprocal formulae of -
Theorem 129 hold. .

Theorem 129 is thus a consequence of Theorems 130 and 151
Bus it is possible to prove it directly. O\

The above theory is due to Watson.t We shall call functions fl)
and g(z) connected by (8.5.6), (8.5.7) k-transforms; argd (8 5.8) the

Parseval formula for k-transforms. \

8.6. Prooff of Theorems 129, 130. Let f{:c) be any function
of L2(0, o0}, and F(s) its Mellin transform, gq\f‘hat F(3-+4t) belongs
to LA(—c0,00). Since [R(}+it)| = 1, KiGFdIF(3—it) also belongs
to L2 Let g(x) be its Mellin transform.{Ehen|]

. }+iw N ’~'
j g(u) du — j R)F(1—s) 2 s
i-'l.m
Now ky(x)fz iz the Mellin t{hnsform of R(s)/{1—s). Hence, by the
Parseval formula for B@n transforms,

+w;\
K() & k(@) gy o
5 Gy B s ds = f17y-~f(y> dy.

7ol

' M &
Hence \\" J glu) dy = I ) fly) dy,

Q

and™ {8 5 6) follows almost everywhere, The k-transform g(z) of f ()
'13 us the Mellin transform of &(s){§(1—s) (on o = ). By the same
- rule, the k-transform of g(z) is the Mellin transform of
K/ —-8)F(s) = F(s).
Thus the k-transform of g(x) is f(zx). All these transformations are
of the class L2 so that the necessary uniqueness theorems hold.

+ Wfl.tscm (2} 1 Bushbridge (1. .
j| This formula and the next come under Theorem 72, extended as in (2.1.23).
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Finally,

o

[toedr =g | aringi—ior

1

— o | warora= [ goprae

the Parseval theorem for k-transforms.
Theorem 130 also follows at once from the Parseval formula for
Mellin transforms. Sines &,(z)/z is the Mellin transform of K(s)/(1—8),
"\

o -+

| Byfae) bypr) o 1 [ KEeT KA g o
ax bx

U

2mi 1—s 8 )
F—im N\
#+io ™y
1 g-ihe-1 N
_ — —— fid s
2t 1—8)s = U
o {1—s) R

by the functional equation for f(s). If & > b, thé integral may be
evaluated by moving the line of integrabiopja}vﬁy to the right, and
the value is 1. If @ > b, its value, obtgined by moving the line of
integration to the left, is b-*. Also thie)htegral on the left is con-
tinuous at @ = b. Hence the result.,’:l

8.7, Proof of Theorem 1340} Suppose first that f(z) has a con-
tinuous derivative, and thatit vanishes for all sufficiently small and

sufficiently large values ofw. Let
Rk, [k
gl(yl.eT B o) e = [ BL24{)
¢ \%/ Q ’ i}

Then g,(y) ie{iiﬁéa;rly differentiable, and
\\\ ., i 3 e 1 s
o= o) = —5; [ B (@) au =~ [ mense
. ’\' ¢ 0 13
Eeme

J gy dy =

ay { @iz [ e d
: j k(y)f (@) dz j (En)F(&) dE

By 8

~ Tf’(x} d f Frae f’f-l‘—”-yg:&@’ ay
0 ] 4]

+ Titchmarsh {15); sed also Plancherel (6}
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L=}

= [ 1) de j f(€)min(e, &) d¢

i
c'“—‘—aS =

fwye d f 18 dt + f FOF dé j f(@) de
= =2 j f@)f (@) de

— [—elf@ + Iﬂ(xa}z &

= j {fla)e da. S

4 '\
All the transformations are easily justified if f(x) s&tlsf‘es The given
conditions,
Next let f(z) be any function of Z2(0,00). The‘h\lt is known that
there is a sequence of funétions f, (x}, each satlsfymg the conditions
previously imposed on f{x), and sueh that\ A

lim j {f(x)—f,,(x)}* 5 = 0.

Yet g,{z) correspond to f,(z) in tjm same way as the above g(z) does
to f(x). Then N\ .

f {gm(x)—ﬂ"@ e de — f Unl=fule)? dz,

Whlch tends to 0 asym a,nd 7 tend to infinity. Hence the sequence
7. () convergesm ‘mean, to a function g(x) say. Then :

f{g(x)}z\d?f’t lim [ {g.(2)}* dz = lim f o) de = j {fay® d,
' nRY o -

* the Pa,rseva,l formula.
”\Also

N j glw) du = lim Ji! Galit) A

J‘ kl(xy)fﬂ(x) dﬁ?

Tt

_ | Rz .
= j Tf(x) dz,

1]
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so that gly) = Eg; J' ?.‘_1(;”3{)_ fx) dx

i.e. g(y) is the k-trensform of f{z).
Tet ¢(x) be another function of L*(0,00), and #(x) its k-trangform,
Then the Parseval formula gives

[ gtnitz) do = [ fl@)p(e) da.
0 a

Let $lr) =1 {z<Lu), 0@x>u). N\

Fraten) e () 5 [ afo) O
Then f Ml_x_ ¢z} da = f ——l-mm Loy == f --l-x-—--- dx, Ko

o 0 o P

g ~: 3
and hence Wly) = Edg} f klf) dx = k‘(::y). m\‘
¢ ‘\\,

Hence f glz) 2 (ux) du = f f{x)\da‘:

1
and the reciprocal formula (8.5.7) fqllgws.

8.8. Necessity of the condi‘;lib“ns.‘f It is also easily seen that
the conditions imposed on kgx} and &(s) in the above theorem are
necessary. For suppose t]%a{;\t e reciprocal formulae

x \ ©
Jﬁ(y) dy = f .kl(uiu)g(u) du, (8.8.1)
x\ »
= | Sl d 8.8.2
0\ f 9(y) da f ) flu) du (8.8.2)

hold.f§ ﬁzmy funetion f(x) of L0, c0). Letflx) = 1(x < £), 0(x > §).
Then/(8.8.2) gives

& £ ¢x
k
J ot dy = f =
0 1]
so that glx) = L(;cf—)

+ Busbridge (1).
43462 Q
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Substituting in (8.8.1), we obtain

[=#]

f kﬂ;?;l_(f’“) du = min(z, £).
i)

In particular (x = §=1) k,(u)ju belongs to LA(0,c0).
T R{s)/{1 —s) is the Mellin transform of k,{z)/z, Parseval’s formula
for Mellin transforms gives

4o o

1 i RKig)e—® R{1—s)bs! d J‘kl(a-x] k(b)) min(a, b)
ar b ab

] 0 \

-8 5—1 1 N
But also 1 e bl min(@,b) O\
B l1—s s ab d

2 1—s s
1—i=

. N\
i e N

Hence (taking b = 1) N

b iw . 57>
1 1—K(IR(L—8) o 2y
- J. —(1'—73)3 ‘g% ds —})

iz A\
for all values of a. Since the integrandj@%&%he product of functions
of L?) belongs to L, it follows from Fheorem 32, p. 47, that it must

be null, ie. that KES)IR(Lg) = 1.

8.9, The unsymmetricgl'fférmulae. For the transformation
arising from the equation (8'8:5) a similar set of theorems holds. We
now assume that $(3§%) and K(3-+i) are both bounded. Let
hy(@)jz and ky(2)fx be'the Mellin transforms of ${1+448)/(3—it) and
K(3+it)/(3—if). Then'a given function f(z) of L#(0,c0) has two txans-
forms ON

. BT hofay d [k
- gk(x:) ko nf --—l(yﬂ)-f{y) dy,  g2) = J %l—(yxy-}f{y) dy.

The kittansform of g,{z) is f(z), and so is the A-transform of g()-
:I_‘thjﬁétua.l Parseval formula is replaced by the relation

~ | sutedaute) do = [ () de,
0 0

together with the inequalities

[ lo(@)1 de < ¢ | {f2)}* de,
0 0

[ @i de <o f (e =
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The proof of Theorem 129 extends without substantial change to
this case. That of 131 holds only if R{}-) and $(4+-4) are con-
jugate, so that g,(x)g,(x} = lg,(¥)[% In the general case the result
still holds, but now we have to prove (8.3.5) as in § 8.8, and thence
proceed as in the proof of Theorem 129,

8.10. A convergence theorem. In the foregoing theory the trans-
formation is expressed in terms of %,(z), which is not necessarily
differentiable. To obtain the forms (8.1.5), {8.1.6) we require further
restrictions, both on the kernel and on the function represented.{

TrrROREM 132. Suppose (i) that R(3-+it) satisfies (8.5.1) and (8.5:4),
so that x~k,(x), defined by (8.2.3) with ¢ = }, belongs lo &2(0,00);
(ii) that ky(x) ¢s the integral of k{z); (iil) that x-tk,(x) is bogmded

1F S
Let fe) = [ sy . (8.10.1)
| g Y
where ¢ly) belongs to L%(0,00). Then \
f) = | kou)du f\ Buy)fiy) dy (8.10.2)
=0 W

Jor every positive x.

We have &l e
o) < éL Vbl dy f dy} = o(e )

ag r - 0; and

4 "x 4 o &
AN\ 3
)] S5 | 140 d -+ [ [ ey | dy] = o)
0%,
N X 9
as & =80} by choosing first X and then .

\I')th.\tfx(m) be the k-transform of (z). Then y(x) belongs to L%, and

on

[ sty = [F15 g0 du

1]

Let glu) = J ?.Sl)d@;. (8.10.3)

t Hardy and Titchraarsh (8); see also Morgan (2}
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Then

j ply) dy = — j ky(olg ()

- lm { [yfonlgw)+2 j k(g () du] (8.10.4)

3
Now 9] < [ f oo | @] = o (u)

&
a3 % = 00; and

)] < j 40)

dv +U (o) 2 do f }% = o(w iy,

.‘.\

as «->0, by choomng first 8 and then u. Hence,the lnbegrated
terms in (8.10.4) tend to 0, and we obtain

z" 4
&/
‘\

f(x)=§: J Hy) dy = I L(a{t g(u) du. (8.10.5)

: -0 \\.
Again, (8.10.3) may be written

olu) = f va) v,
where u(v) = 0 {v < u}, 1fv (w} ). Hence by the Parseval formula

w?’u) j $W() do,
K

where

Ap) = \f i ) (""’” dt_u-— .[ ki(et) 4y

£ \
N y(£) B, klfm)
\ dv{ _[ '1__“ d‘f] J. g —
”I{bxioe

glu) = fﬁ#(@) dv .f %(f—) at — J $(2) ;ﬁg’} do
e uy H '

= (w)—gu(w) (8.10.8)
say. Integrating by parts,

gl(u} [vf{v) jk;(f) dg} J‘ vf(v)u%?— do, (3.10.7)

b —0
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and the integrated terms vanish since #f(v) = o(2?), and, since
k()€ 18 L?,
_1_(9 dé o (g—i)

ag in the case of g{u). Also

galte) = [f(v)kl(w)] J‘ of () uv) k(o) gy 1 J: of(v )kl{uv) do,

8.10.8)
and the integrated terms vanish since v (uwv) = O(1). (
From (8.10.6), (8.10.7), and (8.10.8) it follows that \
- .'\‘\'
glu) = [ kuolf) dv, A8.109)
_-)0 2 N/
and (8.10.5) and (8.10.9) give the theorem. )

8.11. The resultant of two Fourier kernels:{ \Let
m(z) = f Fay)i(y) d:eQ:\

be the resultant of k{x) and l{x} Then a\formal rule is that, if k(z)
and Ix) are Fourier kernels, so is m(x) We may, for example, put

oGO 4 ",

j j m{zwym(ud) f(t) dudt = j j f J‘ Plzuy) (w22 f(8) dudidydz,

00 cN
and the substitution { = 21/&, y = 2w gives

f f 1)) dzdwj( J !c(mzwu}k(m)f( ) dudv

:t\*’ — f j 12)(ew) flzw) dedw = f(z)

:"\s.

if & and I '\e Fourier kernels.
We“gaai also argue in terms of Mellin transforms, If & and £ are
t}\’Melhn transforms of & and I, that of m is

M(s) = f m{z)rtt do = j 21 de j k(zy)iy) dy

= f iy) dy j k(zyae-t dor = j Uy~ dy j k(uyur du
a a 1} L]

— Q(1—8)R(s).
+ Hardy (20).
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Henee  gnoomii ) = K(IR(1—s)8(1—5)2(s) = 1,

. and the result again follows The argument is still of course purely
formal.
The L2 theory gives -

- TuromEM 133. Lef ky(2) and I,(x) satisfy the conditions of Theorem
131, and let m\{1/x) be the ltransform of k(x)jx. Then my(x) also
satisfies the conditions of Theorem 131. :

 Here m,(1/z) is defined by

° .
J 1) f Ko () g, .~§":'\’

Now. my(ofr) is the I-transform of k,(ax)/z. Hence by Parseval’s
formula for I-transforms

f ol

\

fkﬂ%‘)h(bm) dx = min{a, b);

at & i
m\\'

the required result
CAsa partzcular case, let .91(:::} =0{x<1), 1 {x == 1), so that

sex \~f( HENF O 2ol 3
. We call this the transformatlon S. If kl == [, then-.

- ‘\I ml(y) dy = f kl(t)kl(‘”‘) dt = min(1,%), |

- and m)\—t sy If I, = 8,, then

O [l [50u fefla

Md hy, = k . Thus the resultant of b and £ is s, the resultant of k
_and ¢is k. '

: _EXAMI_ LES. (1) If % and ! are the cosine and sine transformations,
T— ll 1

2
+1 m(:c) - = 1—272,

my(x) = ~10g
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and the m-transformation is
o

g(x):% f ONF

[1}

-1 2

If f is even, this gives

the Hilbert transform of f(f).
The resultant of this transformation and % is defined by

N
2 [ klxt) A ¢
2) = 2 | B g )
mia) =2 [ {50 &
1] « N/
or, regarding k{x) as even, by N
m(z) = 1 [ k) \\
T z—t

—o

w\,/
Thus the conjugate of a Fourier kernel is a F{j’u}ier Lernel.
(2} The function I;{z) = = (x < 1), & @@= 1), satisfies (8.5.5). We
conclude that, if k(x) is a Fourier kg{né‘l, then so is

g 1 v',‘; v x
miw) — J. Fat) diy () = .[ i) dt —k(z) = é j b{er) du —F(x).
1] 3! 1}

o~
Similarly, taking Zl(x{%.,o (x < 1), loge—1 (z = 1), we find that

o

f ) g0, —ba)
w

PN\
is a Fouriep'k}rﬁel.
3) 'iﬁli%;sultant of $+J,(t) and t-3J,_,(1/t) ist Jp,—1(26).

"('4;)\'.’}?’[13 resultant of J(2/mcosg, Af(2[m)a" cos x-1is (§7.12)

V g (K@) —To2ve)};

that of \J(2/m)sinz, y(2fmz-tsinz=" is (2 Jr{Ky(2ve) + Yo 2¥x)}
The last kernel is also the conjugate of Ji{2vz).

(5) The resultant of J(2Vx) and cosx igs —sinx, and that of
Jy(2r) and sinw is cosx. This may be proved as in §7.12.

1 Watzon, § 13.61 (1), or a8 i §7.12.
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(6} We have

_ 2ginpm grtt
1—z2

b fﬂﬁ(xt}J_p(t) dt = {(C, 1},

if # # 1, while when z = 1 the integral diverges like

Cospm | 4t
: )

The divergence indicates that when we form the resultant of
adJ (x) and xtJ_,(2), there will be a discontinuity in m,(z) at z. = L
In fa,ct

2sinpm [ 43 41 A\
i o 1 \J
(o) = — 210 f T <l

N

0

_2sin 1%, f tf"""'* dt

ot
7Ny
\ %

= ieosum &5 1)

Ir
1]
The inversion formulae are K9 N
K
2 4 1.,.{1
gla) = — 2500 f 0 &t conpen 1 (1)

and the reciprocal formula. &N )

(7) If we form the resultaiit m(z) of J(2{r)cosz and Jy(2+%), and
then replace miz) by 2 ka;"!m(l / 22:) we obtain the Fourier kernel

(Ex)i{eqk(x—-— $m )y (@) sin(a—Lm)_y(2)).

8.12, Conve{gence of k-integrals. We now leave the transform
theory, and e quite independently a theorem on convergence in
the ordinary*sense. To do this we have to make very special assump-
tions, and the theory is practically restricted to those examples in
§ 8.4.f1 which R(s} is a product of D-functions, For such functions,
however we obtain a direct generalization of Theorem 3.

THEOREM 1341 Let R(s) be regular in a strip o, << o < a,, where
o1 < 0, 09 > 1, except perhaps for a finite number of simple poles on
the imaginary axis; and lot R(s) be of the formas

e eof L) woetrof)

1 Hardy and Titchmersh (8).
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for large positive and negative ¢ respectively, where

fy(s) = I'(s)cos sm
is the Mellin transform of cosx. Let R(s) satisfy (8.1.9), and let k(x)
be the Mellin transform of R(s}.

Let x > 0, and let f{y) be L(0, o), and be of bounded variation near
y = x. Then

j ko) du j Euy)fty) dy = Hfw+0)+flz—0).  (8.12.1)

_ The function R,(s) is regular in any strip o; < o <{ oy, except for
a finite number of simple poles at points where o < 0. If t 13\1&Yge
and positive, then (

Rolo-4-it) = Ci* ireitflogt_nrl_l_ +O( )} Cj.‘:

where € and a are complex, and ¢ depends ¢u o and Ry(o—1t)
satisties the conjugate formula. O

The functions O

~N\ inl
Tissinger,  Dio) 1 %‘”’ N D
are the Mellin transforms of
sina;,j{"‘ sinx—zxcosx

) . P "
2\

»,'

sinz,
and are of the form

Ru(s}[ssgniifx{é(i‘l-)}, 30(3){—'*+0(!3]2)}

\“\ Rys )[azsgntJf_O(i_%)]’

for large i}‘}f R(a) satisfies the conditions of the theorem, we can
find consta.nts ay, @y, tg, &y, such that

K(s) = KO(s)-+K(s)+Rs),

vahe‘fé'
[0(s). = a, [{s)cos Jam4-a, I'(8)sin }sm,
899 = 4, T 227 1,10 pger,
and RKB(s) = Of|Ry(s)s2} = O(jt1*N

for large s of the strip. Let k®(x},... be the Mellin transforms of
K8},
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8.13. Lumna «. k{x) is bounded for all posifive .
This is true for X®(x) and k®(x}, so that it is enough to prove that

\ c-da '

M) = —— | RO
¥a) = o— I KO(s)— ds

iz bounded. Ifx 3> 1, we take ¢ = 14-8, where 0 <C 0 < §, 18 <C 0y,
Since K®(s) is then O(|s|-#), k®(x) is bounded, and indeed is O(z—1-3).
If 0 < z < 1, we take ¢ = —8&, where ¢y <C -8 < 0. Then

—3+iw

W) = 5 f SOeJa~ da -+p,

—& o0

Q
,\:\
the latter ferm being the sum of the residues at any poles on the
imaginary axis. It is plain that p is bounded, and t,}ie ‘integral is
bounded because 8®)(s) = O(|s|-3-%). Hence k{z) 1s*bbunded for all
positive x.

o
- 8.14. Lemma B. Let R
' ' A N/
s z,y) = [ Mewhigu) du, (8.14.1)
' i \y
where A > 1 and x is positive wnd ﬁxed Then
| Iph< B, ?) (8.14.2)

for all positive y for w}gﬁc{a]&—xl >

In view of Lemmahq We may replace ¢ by

AR
x(hz,y) = [E@Eukiys) du
\\\f‘ L
W= [ o) - R RO ) - b ) ROy} e +

..\:.

gt

™ A
A% + [ B9kl du.
1

The last term is bounded because ¥®(zu) = O(u~1-%) and k(yu) is
bounded.

Denote the integral involving k%Xzu)k@(yu) by x,. Then xi, 18
clearly bounded. Next, x,, splite up into four terms, a typical term
being
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A . 1y
. sinyu—yucosyu , : sin yu—yu cos yu
f SN K —yzuv—‘* 11 J gin xu.-._.__ﬂy.%_z.___._-, du +
1 1
A - L) A *
f sinzusings , [ sinzu CO8YY 4
Yt yu
Ly Ly

Since (sinz—xcosx)fz? is positive increasing in 0 < x < 1, the first
term on the right is

iy
ginl—cos ! f in
{ ) | sinxu du, ~
Uy
where 0 < u, < 1/y. The second and third are RO N
Uy . Uy . &}
sinawsin yu du, — J. gin xu cos yu du,
Liw 1y O

™
where uy > 1fy, ug > lfy. All these are bounded,’ and the other
terms of x,, may be shown to be bounded in,tin\g- same way. Hence

X2 I8 bounded. v
A similar argument applies to xaq and yg, Thus 2 typical term
of Xa2 is o\
A . R };'
sinzw sinyw &
U YU B
! N
'l.fy A ’i:’z U1 . hy .
=J‘+ J‘yﬂjwdu+jﬂxgsinyudu,
RPN xu %

1oty 1

and each of txhe\hia‘\ié bounded.
A typic%?a’rm in g 19
\ A ct+im
m;\';:" —2:71’ I cos zu du j () —*R(s) ds.
i

\ N/
) 2

If {® has no pole on the imaginary axis, we may take ¢ = 0, and
invert, and obtain

c—iw

@ A
_;; J. YR (it) di J. - cos xu du.
— 1

The inner integral is OQ) = O() for £> ), while for 0 < << A it
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differs by O(¢) from '

A A
cosTY 4 sinau ]t o cosxu A w(#-4-1) cosau ,
| T witie

t - £

each term of which is' O(#). Since 5{(3’(%) = O(|t|~%) for large {, the
term in question is bounded.

If there are poles on the imaginary axis, it is suffieient to consider
one of them, say at 8 = #r with residue C. Let
KE(g) = CT'{s—ir)+-RK¥(s), Bz} = Ca:—ife—*’—}—kﬂ’(x).\
Then {@ satisfies the conditions imposed above on K%, aid the
additional term is R \)
Cy— f w e V4 coszy du = Oy~ ‘T w47 cos :rudu= o1}
i i 2\

K
by the argument used for the above inner iﬁizégral Hence y,, is

bounded. Practically the same argument p{cwes that y, 5 is bounded,
and the lemma follows \ {

8.15. LEMy. Let

B2, 9) = I]‘Qi}é(m)w du,
.‘ NS im

eiw
where bix) = j.\k(u) du = L f (s )—ds
Then |¢| < 3(3;,&) for A>1, 20, and 0 < 2—{ < y < z+L;
and Y{A, x, }{):ébnverges (boundedly) as X — o0 lo the limit
A0 {y <2}, 3 (==, 1 (y>=z).

Sineevk(u) = O(1), k{u) = O{u) for small u, the integral over
(1[}\ A1) is bounded. We now write

Q: Be) = K@)+ k),
where ¥ is the same as before; and
j o) 1) g,
4 U

T A A . A

— I k(i)(m)}il}g'ﬂ du -+ J. k(xu)k(f){yu) du + f kS {au) kD (yu) dat.
. U ]
1 i

i
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The first term is a multiple of

A
f (ay cOB 220 - a1, sin zu) LY +ﬂ:(1— cosyu) 5
1

A A
cos zi sin yu cO8 XU —
= o} J. — LYY g —I—alazj ios(x-{—y)u du 1
1 1
A -
tad J‘ gin zu{l — €08 YU) du,
%

1 A\
each term of which converges boundedly. Also k(u) and E{M(u) are
bounded, O

N\

ES(u) = 0( f (141870 dt) = O(u-i+5)(,,j}(:~.

taking ¢ = }—5; and k{®(), like 4k®(x), is O(u3)\The remaining
terms are therefore bounded. :

_ This proves the lemma except as regarc{sitbé value of the lLimit.
To ealculate this directly requires some further examination of the
argument, but the result can be obtainédfrom the transform theory.
We have in fact proved that a3 :"..

f AWkE) 5
e v l‘u'
R
converges bounded] @n’x > §, where 0 <8 < I, and uniformly
except near z = 1pherce, if its value is ¢(x),
o~

j Bl = kﬂx){kl(x:g-kﬂw} du = min(z, 1)—3
F] 'S M 0

and hg;{eé\” day=1 @<, O @>1.
If z.2=01,
w\; X x x .
N\ I by(whiw) 5, _ BX) J k) g, o J B g,
% X U %
Q 1] o
and since each integral tends to a limit as X — o0, so does X)X,

and this limit must be zero since k3(X)/X? belongs to L(0, o0). Hence

k() o _ [ B g —
2.[#%—?&&——_" f“z du=1

0 0
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8.16. The Riemann-Lebesgue theorem is here replaced by the
following theorem, due to Hobson (1},

Lavma 8. Let f(t) belong to L(a,b); let ${A, 1) belong to L(a,b) for
all values of A, let it be bounded uniformly with respect to A in (a,b);
and let

3 .
j $(A, 1) dt > 0

as A — 0, umformlymocandﬁfora a<<B b Then

ON
li f FO)BO 1) di = 0, .
AN

Suppose first that f(t) is absolutely continuous in (Q,‘b) Let

7 '.‘

j $0u%) du =00, )
o)

Then j FOSA 1y dt = f(B)py(A, B)— thm t) dt.
. Given ¢, we have \
A 8] < e (h >“A (e) a<t<b)
and hence

j J$0.0 dife< { HOI f 1) 0> x).

The result therefoxg\féﬂows in this cage. :
In the general case we can, given e, define an absolutely COmE-
tinuous functlon x(t) such that
.z‘\“'
\O" I 176 —x(®) dt < .

+ S

Ha.mg fixed ¢ and (£}, we can, by the first part, choose A, so large
mﬁh&t B

j $(OBIA, 1) dt‘ <e

113

If |4(2, t)| < M, it follows that

; J F&pA, 1) dt‘ < ;! XWPA, 1) dt +ff{f(t)*—x(t)}¢(ﬁ, t) dﬁi

< et+Me (A > A).
This proves the lemma.
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8.17. Proof of Theorem 134, By Lemma « the integral
[ Kup)it) dy
1]

is uniformly convergent for 1/A < % < A, so that we may multiply
by k{zu) and integrate under the integral sign. Hence

j k(za) du f Huy)f(y) dy = j F)pd.2,y) dy

5 8 z—{ % z+l A w
= oj + f j + j 'i}J + J
= 11+Iz+13+14+1 +1.s K D
it follows from Lemma, § that R W
] @ AN 3
Ll < B j faldy <e Il < B ife)) g e
for 8 = 3(c), A = Ae), A > 2. N
Next : \
f ¢ dy = J. k(o )kl(Bu) ;6“’“) du
LA ™
= (2, w,ﬁ)ﬂl:(?t z, ).

If a<ﬁ<m or x<a<B {his tends to 0, when A->w0, by
Lemma y. Hence, by Lem:{a 8,

R@Q.ﬁ G, )“hI’E;Is =0
when £, 8, and A are(fixed.

We may Suppase\g small enough to ensure that f(y) is of bounded
variation in (:c&'—\l ‘2-+{), and then

AV e 0) = AE)—Hn)
where f1 antl f, are positive and decreasing and tend to 0 when y -z
f['OD;L b&low Then

N, = fa—0)h, z, 2)—b(d, zx— D)+
+ j Lt 2,y dy — [ Lo)02y) dy.
z—1 z-{ ’
The first term tends to 3f{x—0). The second is

7
A0 | dy = He—Digtam—dd 2o -0}
z—4



)
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where z—{ < 5 < %, and, since ¥ is bounded, this is less than e (for
all A in question) if { is sufficiently small. A similar argument
applies to the third term. Hence

lim I,— 4 f(z— 0)‘
Ao

if £ is sufficiently small. There is a corresponding result for 1, and
" it follows that

Jim f R(2u) j Eun)fy) dy = Hf@+0)Hflz—0) A
“ 1A

The. u-integrand is, however, bounded as % -> 0, s0 tha’b ﬁus may
be replaced by (8.12.1). This proves the theorem. O

1t is easily verified that the R(s) which gwe,s~r1§e to Hankel’s
theorem satisfies the above conditions if » >\-\- ; and so do all
the other {’s which are products of I'-functions if the parameters
involved are subject to suitable restrictions.

8.18. Hankel’s theorem.i The mést important particular case

- of the foregoing theorem is that i inwhich k(z) = v J (). This case
can be obtained much more smaply

TarorEM 135. If f(x) qus to L(0,00), and is of bounded variation
near the point x, then for v = —

Hfat 0)+f(v\\-0)} ~] J(mw(m} du j Sy W) ) dy.

(8.18.1)
Let & be:ajsma]l positive number. Then

A

I z—8&
[ JsWwn) du [ I u)ity) dy

044
o\

RN x—3 R
O =iz [ Wty dy [ Jwu] (uyyu du
_ 0 0

e "T g, ), 00)— 9,1, 00),0)

ai oyl Ny fly} dy (8.18.2)

= O(vA) f ) =5 "@f (y) ! dy +0() J' Tuln ?ff.("f) dy,

(8.18.3)
1 Watson, Chap. 14.
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for any fixed x and 8. Now
1A

f IOy )"yf @) gy = ( f (Ay)vyﬂf(y)[dy)

1A 1fA
= 0 [ gt} ) = 0fx- [ 1100 dy) = 001
o 0
For Ay == 1 we have

_ Acos)y+ Bsinpy
u) = AN 0 ).

The O-term contributes A\ ¢

x—8 . A\

O()«-* f /()] d—y)

A
1A g
= ( f il dy)+0(a = 1k d§) = o),
1}'&’/\ \

and the main term contrlbutes ‘.\ v

z—8

(4 cosdy-+B sm?ﬁy) ﬂy} Sdy = o(dH)

17
by the Riemann-Lebesgue theorem The second term in ({8.18.3)
may be dealt with in a simjlar way. Hence (8.18.2) tends to 0 as
Ao, ~\

Next, we may mvert\\

f J(mw(mu) du j J, (W) fy) dy

o0 a+8
by the uniforiny convergence of the y- -integral. The proof that this

part ’oendséb iz then similar, but simpler, since here y is not small.
We cgn ‘suppose § so small that f{y) is of hounded variation over
\'3\93*1-5} Then so is y—>-4(y). Hence in {z,z4-8) we can write
y=r-H(y) = 2z +0)+ () — %),

Whﬁl‘e x, and y, are positive, increasing, and less than e. Then

(v

r+8

f L R oL

&+8

= f J (zu)u du f J (g )yt 23z 0)+ xu () — xe(9)} 4

439z B
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The first term in the bracke$ contributes

2=f(z+-0) f T (- S8+, (o] du

~+a:*"f(x—{—0 (ar—dav) = gf(a:—}-O),
by (7.11.15). The second term contributes
a+8

Az f J, () du f Sy x: () By

=48
=z | u@ydy j Iy, ey ds '
@ Y

z+8 N\

= e yy(2+3) j g dy f T gude N

= ¥z x3(4-8) j J fw)[ (w3741, +1{(x+8)u}—§v+%ﬂ(fu)] du
\Y; _ :
wherex<§<x—i—3 Now for z = muxo\y =,

jJ(xu) L aly) du
v" . A
du 1
= O(U—i— JGOS(x—QVw—Zn)SIn(x—fw— 7) —ot f 0(—)-du
Jeyu uf
= O(1) 1 ’\ 1

for all A. The contr}but.mn of the y, term is therefore O(c). Similarly
so Is that of the Yo term.

The thenJ{em therefore follows on choosing first 8 sufficiently
small, dethen having fixed 8, A sufficiently large.

8. 1‘) Formulae derived from Hankel’s theorem. Simple
;pa}rs ‘of Hankel transforms may be derived from (7.4.6), (7.11.6),
\(?I 11.8)—(7.11.15), and (7.11.17). Another elegant pair is

23v—1p{v_}_ ]2_)‘\{“(2;_&)‘;:\/';’1; J;,(px}'};(qx)’

{2 — (- H(p+g—= vt~ (jp—gl <z <Pt
0 elsewhere. (8.19.1)
To prove this,t put v= —3, p=21—} w=1, y=-sin’

1 This is Bonine’s proof roferred to by Watson, § 11.4L.
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(7.14.9). We obtain

at-t _JA{J(a,2+ 8 _ =
(@b

f sin*+ig.J,_(a5in §) eiboost g4,

(8.19.2)
Putting @ = gsing, b = p—qgcos¢d, and multiplying by sin*+¥¢ and
integrating, we obtain

Hiip*+g° 2}?{{@@8«#)}
f (P*+g*—2pycos )it inlg dg | ~

Y T . T ) N
i f sint+ig dg f i +.J)._y (g sin 8 sin ) efoost—coosgh g
,\,u'r(27:r) . . O
oA ES N
—~ j‘( s J' s 40 o+ df f mn"“cﬁ.}}(_i(qsmﬂal.gqb} e-iacoshooss g

]

= gt j sint+g eir_aosﬁ sin-49 Ji(q) 40 .\x’.ﬁ“

o 7
= 2L+ DVr(pg) A hEMhe). | O (8.19.3)

The result stated follows on tak:hg P:+q:—2pgcosd = £ as a new
variable, Ay
The remprocal formula‘i‘ is™

j 2 (), (@J{m) da
=P M+ —wP g5y
= 23X D{v-+ 4} (pgu)”

N
if |p—q| < d'< p+q, and O otherwise.
Still qﬁ%er results can now be deduced from the Parseval formula.}
For emmple {7.11,12) gives the Hankel transforms

DR ax), el HT(Av-1et4e?) Aot (8.19.5)

and we deduce

.x'_\f

f e+ iR () K (br) doe

o4 dz

— 2A+p+2va}b;ep()‘_+v+1)]_"(#—|—v+1)v[ (a2+x2)3+v+1(62+x2)p+v+1.

t See Watson, § 13.46; Nicholson (1). } See Titchmarsh (11).
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. We can put z = btan# and expand the integral in powers of

(b2—a?)/b?; if @ = b, the result (with » = tp—fA—fu—1)is
f Ky(ox)K, (ax)er- de
27 pletrop\plp A\ pe—AHn (P+?‘+ﬂ«
= " | “‘_)F( Tl ) o)
Slmﬂarly, from the Hankel transforma (see (7.11.14)}
avHalg aved
23"6!.2”1-'( +%)J(arx}K( az), W: .
we deduce \{\“\
t ' -8 F(%V-t-l)l"(v-i-l)r‘(,z;ﬂ-f"%) :
2 2 2r+1 .
| Tt 3 ampt do = g o wr A (8.19.8)
and from (8.19.1), with p = ¢, we deduce \\\

(8:19.7)

{ Y P \ A )
of Ty do =T Ficz=tye) (8.19.9)



IX
SELF-RECIPROCAL FUNCTIONS

9.1. Formalities. IN previous chapters we have noticed a number of
functions which are their own Fourier cosine or sine transforms, i.e.
functions f{x) such that

rer=/ (%)If(y)coswy dy o110
or ' fle) = J (72;) ff(y)smxy dy. ;‘\' (0).2)

0
The simplest solutions of (9.1.1) are
x¥ gt sech{z,/(}m)}: ,"*}\\

Similar seclutions of (9.1.2} are O
J RN |

d @, eSS Ty
a-t, ze~t, ezq(zw)_c'l,VxJ(2ﬂ)

O"‘
<

3

There are also funetions which ate, their own Hankel transforms
of order v, i.e. solutions of K

f2) = [J@Wgay) dy. (9.1.3)
N\
Solutions of (9.1.1),@1?2), (9.1.3) will be called R, B, R, re-
spectively. O\

Other functioné’are ‘skew-reciprocal’, ie. satisfy (9.1.1), (9.1.2),
or (9.1.3) with pﬁe sign of the right-hand side changed. Such functions
will be calldd) = R,, —R,, — R, respectively.

The ﬁrét\problem of this chapter is to determine all self-reciprocal
funcﬁith; or (sinee complete generality is hardly attainable) all such
fafittions of certain classes, such as the class L2 We shall take (9.1.1)

as the typical case. \
In a sense, there is an immediate solution. If g(z) belongs to L2,

then g{z)4 G,(z) is also a function of L? and is plainly self-reciprocal.
Also any self-reciprocal f(x) may be expressed as

i)+ 1f@) = Hfle)+ 1)
The formula g(z)- G, (x)} therefore gives the complete solution of the
problem.
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On the other hand, it is obvious that none of the examples quoted
above have been obtained in this way, and the solution does not
enable us to decide (unless by actual verification) whether a given

" f(x) is self-reciprocal. To determine whether f(x) is of the form ¢+ G,
- is to solve another mtegral equation, viz.

fley= gl)+ J ( ) f oy)cossy dy. (9.14)

We shall consider such equations in § 11.15; but it is easier to attack
- (9.1.1} directly. O\
Let () be the Mellin transform of f(x}. Then (9.1. 1) gkvés forma]ly

o) = J( ) J. v .[ Sy} cosx&dy i
. = J (%) J fly) dy Jgk—\}msxy dz

=/ (3) r(stzéé‘%é% j Fy dy,

ie. 3’-(3) satisfies the functaonal equatmn

J( )F(s)cos 87 3(1—3) - {9.1.5)
- If now we 'wnte.%(s) = 28T (3s)(s), then |
A (s) = ¢(1_3), - (9.1.6)
and, by WIellln’s formula,
,\\ 1. ‘etim ) .
o floy = o J. 298F(1s)¢(s)x—s ds. (9.1.7)
Y g—ia -

\We may therefore expect (9.1.7), Where J(s) satisfies (9. 1. 6), ie. is
an even function of s—3, to be a general formula for functions of R,
The simplest example i s

H(s) =1, fla) = 29_”"
We can deal with (9.1.2), or genera]ly (9.1.3), in a similar way. If
f(x) satisfies (9.1 3), then

oo

56 = [ wwa jxsvu : __2*i*_r_(_%~v+%~_s;t;) f - dy,
| Jf v} dy (xy) due Ry = [y

G
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_ PV o ¢ PR R

ie. Fs) = 2 iﬁ-%%(l—s). (9.1.8)
Putting F(s) = 2¥T'(dv-38-+1)¥(s), we obtain as a general solution
of {9.1.3) epion
fo) = o j T+ fs+ D)t ds,  (9.1.9)

c—da

| where y(s) again satisfies (9.1.6}.

9.2. Another formal solution of the problem is obtained by
considering

xs) = [ f@)e = da. JRACEB)
Then (9.1.1) gives ) ’ i ‘
xs) = J (72?) J oo d:cj fgeosaydy”
YD o i
9 « @ .- sxos\\w
= (—) .[ fl) dy f e‘.*."\i‘cosxy dx
i 0 0 () v
1] ey
0 A\
i.o - Sy = L2 (9.2.2)
L8, ’{m’ = gx g)- N
\Q.I
" 1
Ip) = sixe) ghen ulo) = ) (9.2.3)
\<
We may wribe'(9.2.1) as
O ®
O e = [ e dn,
,:’;’. 0
and the reciprocal formula is
\ / 1 ct+iz
) = 5 | xeerds
c—im
&+ i
or _ flz) = 2_x_ J. u(s)et*ss~t ds. {9.2.4)
. o J

Hence (9.2.4), where p(s) satisfies (9.2.3), may be expected to.be R,.
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The simplest example is
2t
o) =1, f) =g
I'@@)

For general v, let

o0

x(8) = [ fla)er et de. (9.2.5)
Then (9.1.3) gives ‘

x(8) = f eIy r b da f fly )xf (@y) (xy) dy

N

—_ ff(y),\.fy dyfe—isszzxv+1Jv(xy) da ’\:\.

0 0 NS °

¥ e N\

= [ 1w Zeay O

5 o\

1 {1
= 82v+2x sl :‘\\.:

If pus) = stvHiy(sh), then pfs) again saﬁsfﬁes (9.2.3), and
' ey c-i—ioo:::’
flx) = Z—%— ‘;’:jlp(s}elx’*s—*”“i ds. (9.2.6)
Tt el

BN A ]
. 9:3. 8till other formulae of the same kind can be obtained by
replacing the e-#' oﬁ,'!sﬁe_ above example by other functions which
are seif-reciproca%'\éfﬁd which also are the kernels of a general
‘transformation \We may take, for example, the function
\&~ b Ty (3=?).
Proceedjx\a?@a’é before, we obtain

™

N [ (R st ) de = Sx (E) ’

NS &
N
~and f(z) can be expressed in terms of y(s) by Hanlkel’s theorem.
his transformation has been studied in detail by Mehrotra (8).

9.4. Functions of 72, We shall now justify the above arguments
under a variety of conditions. The simplest conditions are provided
by the L2-theory of Mellin transforms.

THEOREM 136.7 A necessary and sufficient condition that a function
f@) of L¥0,00) should be its own cosine transform is that it should

T Hardy and Titchraarsh (4). Proof suggested by Miss Busbridge.
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be of the form (9.1.7), where ¢ =4, the inlegral is a mean-square

integral, FE+it) = 2T -LitRh(3+i2) {9.4.1)
belongs to LX{—c0,0), and (9.1.6) holds, i.e. (3 +1t) i3 an even function
of L. )

In view of the L? theory of Mellin transforms, all that we have to
prove is the equivalence of the self-reciprocal property of f(zx) to
(0.1.6).

Now f(y) and sinzy/y belong to L3(0,0), and the Mellin transform

of the latter is \
(L 4-it)cos ja{§ et} awt /(3 —it). R
Henece A\
- . N\
2 sin &y W
JB) [0 a
0 ¢

: S
= (%) i 3(%—it)F(%+it{?§§w(¥+it);iT:; .

T : w© \.
Also - If(y)d = m;_T f g(ﬁix)’% dt.

If f is self-reciproeal, the right-hatid sides must be equal; since each
integrand belongs to L(-co, 90’);f they must be equal almost every-
where (Theorem 32, p. 47){\Hence y(}+1) is even. Conversely, if
P(}+t) is even, the 1i fit-hand sides are equal; hence so are the
left-hand sides, and ‘so{}{ i self-reciproeal.

9.5. Functigusof L7
Treonen, 37, If a function f(z) of L?(0,c0), where 1 < p < 2, is
its own s?siiw’tmnsform, then it is of the form (8.1.7), where
Fls) = 20T (Fsppls)
iap dnalytic function whick (i) is regular in the sirip
o<t (’=L), (9.5.1)
P’ P p—1
(i) tends to O uniformly as s — oo inside any nterior strip, and (i)
satisfies (9.1.5); the integral in (9.1.7) is & mean-square integral along
any line of the st’rip (9.5.1).
This is a one-sided theorem, with conditions which are necessary
only and not sufficient. ' '
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If f(zx) belongs to L2, its cosine transform belongs to L#', 30 thay,
Ji@) here belongs to both L? and L#, and therefore to all inter-
mediate classes L. Tn particular it belongs to L2, and so satisfies the
conditions of Theorem 136.

The function §(s) reduces to the F(§-+4t) of Theorem 136 when
8 = }-}at, but &(s) is now an analytic function, regular in the strip

“(9.5.1). ‘In fact

[ f@)ao-t do . S
1

oyl Yoy r ; &4 YOS b’
< (J v o] (oo e [ e ™ (s ",
0 i i ils'

and these integrals converge for the vahies of o s{oé,té;i. It follows in
the usual manner that (s) is regular in the.st;n“p, and bounded in
any interior strip, Ce ’

Again, we can write {{s) in the form 7\

3 A w "
560 = ([ + [+ ) o — 5,000+ 34000+ 3o
. 0 F. I \ o .

"

.Létn‘}-[}, and O
' Up' k9 o < 1p—9. (9.5.2)

<P feeal o

as 8 - 0, and we ‘ch}therefore choose 8 so that |§,] < « for all s in
(9.5.2). Similagljr; ‘We can choose A so that (Fs] << e. When § and A
are fixed, >0 uniformly as s >0 in (9.5.2). Hence % — 0 uni-
formly in(9'5.2),
It ﬁoﬁnﬁs from Theorem 136 that §(s) satisfies (9.1.5) on ¢ = }+it,
andwe throughout (9.5.1),
~(Fhus F(s) possesses the properties stated in the theorem, and it
remains only to prove (9.1.7 ). Thisis true for ¢ = 1, by Theorem 136,
so that it iz sufficient to prove that the value of the integral is
- independent of ¢; and this follows by the argument of § 5.4.

9.6. The previous theorem is a one-sided theorem, and we cannot,
in view of the asymmetry of the theory of transforms about the
number 2, expect in this case a theorem ag satisfactory as Theorem

- 136. There is, however, very similar class of functions for which
we can obtain a corplete solution.



0.6 SELF-RECIFROCAL FUNCTIONS 251

We shall say that f(x) belongs to L}(0,00), where 1 < p < 2, if
2%f(z) belongs to L*0,c0) for
1 1 1 1
—y = —§+§ < a <1—3—§ = a.
It is plain that f(z) then belongs to L#(0,1) for g < 2. Suppose now
that p < ¢ < 2. Then we can choose « < ay 80 that 2¢a > 2—¢; and
then

F iF a2y 7 o2
e < ([omipan) ([ asoeoaa) ™ <oo
1 1 1
50 that f(x) belongs to L4. If also f(x) is its own cosine transform, i<
belongs to L7, so that a self-reciproeal f(x) of L} belongs to{ all
L-classes between L? and L¥, though not usually to either of these.

The class of self-reciprocal functions of L} is thus in tbiég.‘féspect
a little wider than the class of those of L?. In other respects it is
narrower. Suppose, for example, that k() is deﬁneclwﬁy\

Ma) = 27 (al—1 <@ < nl4l 0 =23,
and k{z) = 0 elsewhere. Then A(x) belongs to/ZF for every positive
r, but to no L¥, since 3 2™ is convergent but\‘z (n!)22-2" divergent
for every positive «. The cosine transform.of k(z) is
nl4+1 3

N . |
aa = [ Do [ conmgl =2 JEEe s e,
E AR R .
which is continuous and O(zY) at infinity, so that Hy{x) belongs to
L7 for r > 1, and to L;\@r. 1 < p < 2 Thus kz)+Hix) is a self-
reciprocal function which*belongs to L7 for all ¥ > 1, but to no LJ.
TEEoREM 138. “dlhécessary and sufficient condition that o funclion
f@) of LX(0,c0)sholild be its own cosine transform ig that it should be
of the form Q."“I‘f?), where §(s) satisfles the conditions (i), (ii), (i) of
Theorem 187, and (iv) belongs to L*(—00,00), quét function of ¢, for
all o of (85.1). :
(‘i{‘ The condition is necessary. Since flz) belongs to L7 for
p < ¥ < p', we have only to show that (s} satisfies condition (iv).
This results immediately from the theory of transforms, since

&) = ff(x)w“-%x-im dz,

and z9-4f(x) belongs to L2 if |o—}| < ap L@, if 1/p' < ¢ < 1fp.
(i) The condition is sufficient. Since F(s) belongs to L2 on the
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line § = ¢--é¢, the integral (9.1.7) exists as a mean-square integral

for all ¢ in question, and as before its value is independent of ¢, Tt
therefore defines a function f(z) independent of ¢. Since

x”'*f(&:):% f Ho-+it)z—— gt

for [c—3| < &, and the right-hand side belongs to L2 for every such
¢, f(z) belongs to L}. Finally, by Theorem 136, J(z) 18 self-reciprocal.

. A

9.7. Analytic functions. We shall say that f(x) belongs to
A, @), where 0 < a K m, @ < %, if (i) it is an a,nalytid, function of
2 = re¥ vegular in the angle defined hy r > 0, 101", and (i) it
is O(Jx[~~*) for small 2, and O [2]3-1+¢) for large @, for every positive
€ and uniformiy in any angle (0| < @ < a\:

TurorEM 189. A necessary and sufficient condition that a Junction
J(®) of A(w, ) should be its own cosine tranisform is that it should be of
the form (9.1.7), where (s) is regular, dud satisfies (9.1.6), in the strip

o < ¢ Blka; (9.7.1)

0] ?,Q(é{w—uw)lti) {9.7.2)

Jor every positive 5 and un@fpﬁ}ﬂy n any strip interior to (9.7.1); and
¢ i any value of o in (9.2.3)

(i) The condition

- o  {

A\ f fl@s-1 dz _ (9.7.3)

is absolutely’¢onvergent for a4 < ¢ < 1—a, so that F(s) is regular
in (9.7.1)s\Also, f(z) belongs to L2, and it follows from Theorem 136
that () vatisfies {9.1.5) on ¢ = 1, and therefore throughout (9.7.1),
or, what is the same thing, 4(s) satisfies (9.1.6).

.féklso, J(x) satisfies the conditions of Theorem 31, with 8 = « &nd

N

'is&ﬂiecessary. The integral

b= 1-—gq. Since

\ )

s) = F6)24/T(Rs),  |T(Es)] ~ Cemtolt|fejio,
it follows that (s) satisfies the conditions stated.

(ii) The condition is also sufficient becausge Theorems 31 and 136, .
on which we have based the argument, are reversible.

9.8. More general conditions. The next theorem is of a more

general kind; here f(x) does not necossarily belong to any L- or
A(x, a)-class.
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Taworem 140. Let f{z} be infegrable over any finile tnderval; lel

Fofw) = J (%) f Jy)eosay dy (9.8.1)
exist for every x; and let ’
Bis) = [ flape-tda (9.8.2)
>}

exist for lo—3| << o, where a > 0. Then a necessary and sufficient
condition that Fi(x) = f(x) almost everypwhere is that F(s) should sabisfy
{9.1.5) for lo—3| << a.

Let 3 < B < £+, and . \\"“\
gl@) = [ fEIEF de.
. 1 “.\ '\.
Then g{z) is bounded. Hence if ¢ < 8 AN ¢
X X v’
[f@wetde = [g P de RN
1 1 O
b AN

= X)X (s—B) fulwjes - da
Q!

- 0(1>+0(1a:1~"f"¥?'—ﬁ-1 dx) = O(t})
UL
for all X. Similarly, 6
E o
[ufi)as=t do = Ot
2 x

for ¢ > }—oe. Thqs\’”}""‘

x
AT | faes de = Ol
) '\\“' 1x
in any Stn}} interior to lc—3} <
Ip-f6ilows by dominated convergence that

oo
m3-8‘
) 5O 12—
v 0 §4 i
1 2 B .1 S
= 5 J g di_j 1) E—D)—3)

— i [ fOE—tr
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and that
3+t
1 J‘ - T{s)cos Lew F(1—8)a5* ds
2 (s—1)(s—2)(s—3)
F—im .
4 do
et f D{s—3)cos fom F(1—s)a*ds
21
oo '
5 —0 i
= | rera | Tte—31cos yom 1=
N
—0 f—iw
—ra T ] "\:\'.
=L [ )y f T'{s)sin Lsm(wf) = ds
2 &
- —23—iw "4 \:‘;

e =P

N
If §(s) satisfies (9.1.5), it follows tg@;.\
1( - ' qu 2f —sin xf
5 | fexe—er ag - J(;) | reigint gy
0 o) 0

But, as in the proof of Thefc;i»;shl 118, (9.8.1) gives

f def igzé; 2= [ (g) wacal“;—;’”f 0.

We may mtegﬂrte over (0,2) by uniform convergence; hence

O . £
;"Q 1 f JE@—£p df = j d¢ j du j F(v) dv,
\'% : 0 T b

and, differentiating three times, it follows that flx) = Efx} almost

Gorywhere. .

N/ Conversely, if f(z) — F{x) almost everywhere, the argument shows

that 3+

1 F8)—/(2/m)D(8)cos L F(1—s)

2’“'; (s—I}{e—2){s—3)

—d4e

x%ds =0

for all values of 2. Since the integrand belongs to Z, it must be null
(Theorem 32, second part). Hence &(s) satisfies (9.1.5) on ¢ = §, and
so throughout its region of regularity,
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1f the conditions are satisfied, f(x) is represented by (9.1.7} in the
(C, 1) sense, by Theorem 32.

9.9. A general theorem. Even if (asin the case flz) = z1) the
integral (9.8.2) does not exist for zny s, it is possible to obtain a resnlt
corresponding to (9.1.5}, but involving the functions &.(s), F_(8).
We shall deduce our result from the following theorem, which is
frequently useful.

TugorEM 141. Let ¢{w) be regular in the strip a; < v < @y, and
let $(u—+iv} be L(—o0,00) (or L*(—c0,c0)), and tend {0 0 as uw-—>+ 00,/
for v in the above interval, Let {w) have similar properties in
by < v << by, where by < 4. Let <\

iatw bto : O
j dlw)e-ie dw + j wle=ow dw = 0 N 1(9.9.1)

fg—o th—m £
for all @, where @y < & < &y, by < b < by Then ¢ ami\,!? are regular
for by < v < @y, their sum is 0 in this strip, and\hey tend to 0, as
w-> 4 o0, uniformly in any interior sirip. D"

Consider first the L case. Multiply (9.9.'L}‘By\e“x§, where { = £+1n,
& < n < Gy, and integrate with respect %o z over (0, cv). We can
invert the order of integration by absglute convergence, and we obtain

g+ bt WA
f $@) gy | AV aw—0 @<n<a)h (092
fg—w w—t @pﬁog\w_c

Now move the line of ibegration of the $rintegral to v = 5. We
obtain :

{tta+ o0 N\ \ } ¢b+w
j B(0) e J PO o = —2mig(l) (@ < 7 < G)-
wthy ™ w—{
oo w2 (9.8.9)

The Ief%lfand gide is now regular for b< 7 < @y It theref.ore pro-
Vi'desith'e analytic continuation of — 2mig({) throughout this st.‘np.

ilarly, multiplying (9.9.1) by ¢l where by << 7 < b, and inte-
grating over (—w0,0), we obtain (9.9.2) with &, < 7 < b Moving
the line of integration of the J-integral to 7 = b,, we obtain

iat= by 4 o0 _
) g5 - f $) gy — 2migll) by <1 <)
w— w__g

iy : (9.9.4)

ia—®

This provides the analytic continuation of 2mig({) over h<np<e.
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H b < 9 < a, the left-hand sides of (9.9.3) and (9.9.4) are equal,
by an obvious application of Cauchy’s theorem. Hence

, $() = —(0)
in the strip. '

' 1
<o m( f n j )I¢(u+mz)[du+w = f |¢(u+mg}ldu,

which tends to 0 as £ > 40, by choosing first U and thenf Slmﬂar]y,

for the other term on the left of (9.9.3). Hence 56(!;)—+ 0 uniformly in
the strip. \

In the L2 case (9.9.2) follows from (9:9:3Y hy the L2 case of

Parseval’s formula, and the a,rgument thn proceeds as before; in
the last part we put \ v

¢ Bt
3
‘ '[ i’(ia) Bl < [ J. ]w—xgiﬁf IQS(”‘I"Mz)]zdu]
- ""' ; %_
N
\'\~ "
O |U1§ _f i

'\.‘

iay—o

and aga:q c\hoose first U and then £,

9. 10 Applicatmn TumorEw 142, Let f(x) be integrable over every
ﬁmte interval, and fend to 0 af mﬁmzy, and let

\ ‘:
f@) = J (;) f fy)cosxy dy (9.10.1)
b
for all but a finite set of values of x. Then almost everywhere
1 a4t B+iw
flx) = 5 j +(3)x—sd.s+— f F_(s)x—2 ds
a—ia —ﬁ—am

B<0,a>1), (9102
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where the integrals are (C, 1} integrals; §_(s} ts reqular for o << 0, and
% .(s) for o > 1; and the functions

%.(s)— J (%)g_(l—s)l"(s)cos Lem,

_(s) —A/(f—r)iff_}(_l —s)'{s)cos Lsw

i
are regular for 0 < o < 1, except possibly for simple poles at s = 0;
and their sum is 0 in the strip.

Lt fo = [fdn = f fw) du, A0

2\

{9.10.3)

ete. Then, as in the ploof of Theorem 113, (9 10.1) gives o \/

fg{x>:J() f =52 gy, O (0.104)

Let F_(8) = ff{:c)x’* ldz, F.ls) = J&_}"(‘?:Tx*‘ -1dg,

These are clearly regular fore << 0 a.nd o 1 respectwely, and (9.10.2}
holds by the (C, 1} analogue of Theoram 24 for Mellin integrals. Let

—k+iw N
l . ‘t
®(z) py F-(s}) T@E ‘s —
—4—im
_% f\J( )g+ 1—8)'(s)cos %sw——m)
O ~
| SO
W §_m
”\\” 2_”’ J. J( )3 (1—s)['{s)eos & 131:-( 1)(3—»2)

i—im

= Oy (@) -+ Dylz) + Dy () -+ Py ). .
We may insert the above integrals for §_(s), etc., and invert, by
absolute convergence. We obtain '

w -yt
(fy)
ye) = o J. f) dy f (Efl)Ts-Ta) %
i —i—in

~ [te—ndy > 0 @<,

43562 1 g



258 SELF-RECIPROCAL FUNCTIONS Chap. TX.

F+io
' (e
Byle) = - j s [ ey

i

W) dy @>1),

|
B Ot

- fyf(y) dy —w ff_(y) dy (&< 1).
. . I\ .
Hence  @y(n)40ys) = j ey dy 2 f UL
for all 2 > 0. Also . o\

\/
—»}+uu

Bye) = — J() f f) dy f F(s—?lmlw(xy)*dslf

-/ j f )°°S"“‘?’“yi %‘"‘\”ﬁ?ﬁ

=]

D,(z) = "'J( )27?%‘}‘_)’{3,().1:59 j I’{(s—2)cos Ysm{zy)  ds

’ 1 gt

_J( ) fzf( cos:t:y——l

Altogether ¢
o L) J ( ) f Pl e g —{—a'::—}-ba,z

x\"

WhereQ\aﬁd b are conatants Hence, by (9.10. 4}, -
._p. & o C
AP 225 s .

\\_‘_:-_];m {qj‘ (8} — A/( )854,(1—3)1‘(3)003*,877-1—@-!- pS 2 ](s—l)(s:' 57
i+ im - . _ 28 Jg

+ f [g;+(s)— J ( )g (1—s)D(s)cos jsr—a—2b° 1} 5 fi‘}ts'iii

f—i= -0

for every. positive z. The result therefore foltows from Theorem
141, with an obvious change of variable.

A similar result holds if f(x) does not tend to 0, but (9.10.1) holds.
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everywhere. The proof is similar, but with an extra factor §—3 in
the denominator,

9.11. The Second Solution, A similar set of theorems might be
constructed for the second solution obtained in §9.2. Tt will perhaps
be sufficient to prove one of them, and we take the case of analytic
functions. We shall say that f(z) belongs to A*(w,a), where
0 <w< fm 0<a< 4§, if (i) it is an analytic funetion of = = re'
regular in the angle A* defined by r > 0, |0] < w, and (ii) it, is~

Ofjx[=—4-?) for small =, and O(|x|*~#+) for large , for every positive
& and uniformly in any angle |0} < w—7 < w. )

THEOREM 143. A necessary and sufficient condition that ¢ fumtwn
f(x) of A*(cw, a) should be its own cosine transform is that jt'should be of
the form (9.2.4), where ¢ is any positive number, the intégral is the limit
of an integral over (c—iT, c+iT), and p(s) has theproperties

() p(s) = plpe™d) is an analytic function of &deqular in the angle
Blw,a) defined by p > 0, |$| < In+20; L ¥

(i1) p(s) is O(|s|~49-3) for small 5, and Qafta+3) for large 5, for every
positive 8 and uniformly in any angle J$| < dr+20—{ < 7420,

(ili) p(s) satisfies (9.2.3) in Blw, @\

The conditions of regularity agd order follow from Theorem 31.

It is then only a questionf proving that (9.2.3) is necessary and
sufficient for f(x) to be salf}emprocal

Integrating (9.2.4) ﬁ?q\gef,

ctix
£ % _ieiz's——l ds
.fﬁx) = % pis)s
\:\ c—iw
o\ ol e+
| { \ 1 J‘ s .
& = IU-(S)S“ e{'m ] ds
N Dori
O 7 ¢—io

thb\o%her term being zero, by an obvious application of Cauchy’s
theorem. Again,

. ' e4iw
sy _\’i e<to-vtslg—} Jg.
Y dari
e—iw

and hence

= ctim
. ; .
f foy o dy = = f ez'swdsff(y)e Vi) dy
¥ 473
1]

oo
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; e+ i
’ T
= e*'ss=3y{(28)-1} ds
o f x{(28)%

e—{w

¢+iw
= ‘E@ j e*x"’s-*p(l) ds,
dare &

=

the inversion being justified by absolute convergence. It follows

that
etim lf\
5 J. eix’sa—il,u(s)—p —) ds,
T 7 4
10

fo— [ ) )

and hence that the condition (9.2.3) is both necessary and sufficient.

9.12. Examples.
(1) If 4(s) = 1 in (9.1.7), then \
f) = 261, fla) B bt

in the cosine and general cases re’s’pectwely The conditions of

Theorem 139 (and & fo-mon those “of the leas special theorems) are
satisfied.

If (s} = P(3—s), where) P(u) is an even polynomial, or an even
integral function of order 18ss than 1, we find that

\f\’(wi =2 Z (_;T " pent b

ig its own eos@é"&ansform Tf P(x)is a polynomial, f(z) = e~ Q%)
where Q;’wQ J& a polynomial.

(2)\“&mne 8 polynomials T“(:c) are defined by

s,
%)

A k)
&«

R " ( l)rx'n.—r
,‘\\\. Tv(l‘) = 120?,.! (n—n)! P(ﬂ'r”—_'r—{—l}'
N/ If fla) = 2 Tra)ede,
then :
d8) = Jf{x)e-“ de = 2 (= l)f . B A cd dx

rt{n—r} Dindr—r+ 1)

== z ( 1) ( _i_%_)r—'ﬂ,——v -1 ‘_!'_ (l‘_s)ﬂ

rl(r—r)! n! (}—i—s)’“"“

I glx) = 2 He = Tn(x?),
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then ©
pis) = sivei j glxr e~ g
— ls'}v+}ff{§}e s df — _(3}+3 l)—:-' 1(l+z) .
Hence u(8) = (-1)?&#(;.),

and g(x) is 4. B, according as » is even or odd.t
The parabolic eylinder functions D,(x) may be defined for integrad,
n by N -
T—'i‘(x ) t2 )T’Vr 2n(x\;2) , < \“'\

and rTH?) = (@n+1 _21_1;1 ” :m+1(5W’2) O
Thus D,,(x+2) is 4+ R, according ag = is even or odd; ﬁnd D, (zv2)
is 4 R, according as = is even or odd. This is equwalent to the self-
reciprocal property of Hermite polynommls (§ ﬁ] In fact it is easily
verified that ,
Hy,(x) = (2n)l e Ty (27), Hz,kﬂ(x.}'z (2n+ 1) Ve 2 TH(x?).

In the case v == } Parseval’s forrﬁuiél gives
c+w9
w) dw

]
&\

\\ e+iw w)ﬂ(% 3_+_.w}ﬂ
i 2m(n')2 (Hw)“”(ﬁs—w)““
Dencting thig;xby wl(s), and puttmg w = w’'-+4$8, we obtain
.;%;'(8) _ v T ey
”\.:;, 27:1(?3')2 {(%+%s)2ﬁw12}n+l

Ci\ﬁfkf,';mg s into 1/s, and then puttmg w' = w"/s, it follows that
w(l/s) = sbw(s).

If now sy =s J- D}, (7). 2te =8 dx,
0

{(2‘”"1—1) }%8 (8),

we have . ple) = g

¥ A. Milne (1), B. M. Wilson (1).
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and hence p,(s) satisfies (9.2.3). Hencet

2t D5, (%)
]'-S Rl ]

For negative (not necessarily integral) » we have

o —te-ip-n-1 gf
- Dy(x) p(—n)je
LI}
It follows that
| ~\
. DT () !
_ f 2 1et D), (x) dx = 2én+%8+1f‘(—?:) . O
Q

It is then easily vervified from the formulae of § 9.1 th&ti"'
e
are .

(3) Iff(:c) = sech 2 /(}#), we find that N

Fs) = 2( ) P(s)m),

1 ,.,’12 1
where L{s) = I‘? . 384—?—..., {9.12.1)

and §(s) satisfies (9.1 5) by the functional equation for L(s} (§2.11).
Thls is another example,‘sf Theorem 139.

X \.f()— 1

e“@ﬂ) ~1 /@)
wo find tha.t i‘j(:s) = (2m)¥T(s){(s). Taking v = } in the formulae
at the end*of 9.1, we obtain
£ 3
& e = e = -9
Y s(s—1)’
where £(s) is Riemann’s §-function. Thjs is an example of the
analogue of Theorem 139 for sine transforms.
- Other self-reciprocal functions are associated in a similar way
with the functional equations of other Dirichlet’s L-functions. For
example the functions
cosh($avr) 1
‘cosh{zvar) ’ 14-2 cosh{x,/(3m)}

T Mitra (1}, Watson {4). 1 Vuﬁna {1}.
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are R,; they are associated with

1
509 = 3 Vg

1 1
Lufs) = Zﬂ {(3r+1)s_(3r+2)s]
respectively. And a :
: sinh(eva), sinhfx(37)}
‘cosh{zvm)’ 2 cosh{zy(37)}—1
are R,; they are associated with

L*(S’—Z‘ ey ,g;:f

9=3 et wgl®
respectively.

(4) Tt is easily verified from (7.1. 8), {7.1.9)/ ﬁiat
flz) = cos(ha=2a)

is its own cosine transform. This doey’ ‘not belong to any L-class,

but is an example of Theorem 140 “The integral (9.8.2) exists for
0 < o< 2, and §ls) = 2*3“1F{%s)cos Ln{s—1) satisfies (9.1.5).

(3} The function f{x) =a<¥1 is its own cosine transform, and i an

example of Theorem 14}2“\Here
(&
31-(3)\2' 8——1;-_4,~’ F_{s) = _E_%j’

&

{Q{—)J &_(1—8)(s)cos s = 1—_1-!—(2/1;)_1:‘;8)005 %S“‘
which® h.as & smlple pole at 8 = 0, and i8. regular for ¢ > 0.
~&1hore genera] example of the same kind is
' f@) = 2T (jar-i4-2-e DG depst (0 <a< 1).
(6) Tt follows from (7.5.6) and (7.5.7) that
cos Ja2--sin 3z?
cosb{ay(im)
is R,, and from (7.5.10) that
gin $a?

sinh{z,/(3m)}
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is R, These are examples of Theorems 139 and 143, but () and
#{8) do not seem to be particularly simple.

(7) Taking f(z) = «hd,(32%),

ai2-—tr-§
T BT i 1)°
so that ¥(s) = §(1—s). By Theorem 140 f(z) is its own Hankel
transform of order ». In this case, however, f(x) behaves like xv+t
for small x, and z-* for large x, and does not belong to L2, or to any
. N\

L# for which p < 2,

In the case v = -} the resulting formula is O

we find Y(s) =

o £\
J(g) f vy J_y(byBcoszy dy = w’xJ__i(fééEE}:
ki P
J \

€
Differentiating twice with respect to z, we obﬁég\i‘n formally
9 [ N
J (—) J. ¥y (3y*)cos ay d{‘t—.\ 28 _y(3a?).
oy e
] 8

This is true if the mtegral is ta-ken.'iﬂt't'le (€, 1} sense, but it does not
come under any of our general theorems. A discussion of functions
self-reciprocal in this sense islgiven by Mehrotra (8).

(8) Let  fle) = ad~(a2 02)i0-0) G /at—0%} (2> b > 0),
Then o 0 0 <z <b).

&) =~?ﬁé‘*""(xz—bg)*”-l%av_g{b\/(xﬁﬁ-bz)}
AW
N/ e
’\“ — bs—}vf (Lpuppev—Dyivin],  (b%) du
A& ]
S T
R ="
o'bjr“\('?.ll.ﬁ); and, Kp(x) being an even funetion of i, {9.1.8) follows.
N/ Here f(z) is Of(x—b)"~1} near x = b, and O(z-#*-}) at infinity;
it belongs to L? if o >0, and to L? and Ly if v > 11—-2/p|.
If —1<v<0itisa case of Theorem 140,
(9) The function

fle) = x”+*(x2-|—a“’)‘*"“*Ki,,H{a.J{xﬂ—:waz}} (@ > 0)
is B, (see Watson § 13.47 (2)). By Watson §13.47 (6) we find

46 = 210" s e,

S
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9.13. Lattice-point formulae. There are some interesting
examples of self-reciprocal functions in the analytic theory of num-
bers.t Let r(n) denote the number of representations of # as a sum
of two squares, and let :

P)= X' r{n)—wz, (9.13.1)

oén<e
the dash implying the insertion of a factor } in the last term of the
sum when # is an integer. Then

o f 2
fla) = x'i{P(-g—)—I] (9.13.2)
belongs to R, K
Tt is clear from the definition that fz) = O(z}) as # > 0. That
P(z) = O(xt) as 00 is comparatively trivial, and in fagt\it is
knownt that P(z) = O(z*). Hence flz) = O(x~t) as Y Hence
f(x)is L?, and is ¥ and Lyifp >
We have \
2 2 N
¥s) — J' {P(%)—l}x““ﬁ dx — J(2mb? L{E(m)—l}xis—i dz,
H] <
the integral being convergent, and {(s) @nalytic, for —4 <o < i
The last integral is N\

z? '\ 7
A

)
o

j {m%g:(n)_m}x%s-% dz = “1;8%4‘ f{m;ng(n)—m)xh-i dz,

S .
and this provides the analytib continunation of F(s} to o < —4%, there
being a simple pole ats -1 Mo<—%

\ T . $a—% — _.L._,
'\“ ill( ax)xtt dzx 54}

and \V vyt
if K%;x (n)ats—t dz = ;21 vf (L) Hr@)fetet dz
P £ ’\; 3 ) v 1 ksvi_v}s-—{
Vo => {r(1)+...+r(u)}U'—;§T,
T & e )
=T i3 ;f(v)v‘ t= 118
o)
where 2 = > N = 4Ll Lio)

n=1

+ See Hardy (17), Hardy and Titchmari-_lh {4), 212-3.
i Lendau, Vorlesungen tiber Zahlentheorie, 2, 204-8.
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L{s) being (9.12.1). Hence

Fs) = L(2m)ta-2 .Z_(_%*_%sl.)_,
i—1s
Now 21~9) = =20 O 20

by the functional equations for {(s) and L(s) (pp. 65-6), or inde-
pendently.t Hence §(s) satisfies (9.1.8) with » = 2, and so f(z) is R,.

1t follows from the analogue for J,-transforms of Theorem 138
(p. 248) that (9.1.8), with v = 2, holds in the mean- -square{dense,

In fact it holds in the ordinary sense, i.e. A
W3

s"‘{ (62) 1] - Tmyl*[ﬁ(g;)_l}(fy)w@)ﬁ; ‘(9.13.3)

for every positive £. To prove this we reqlm‘e the analogue for
Jy-transforms of Theorem 58 (p. 83). It J¢ €agy to obtain this

analogue by adapting the argument of § 8 487 There we justified the
inversion of \

j J () () du j Jiuy)«/(uy)f(y) o

by the uniform convergence, of the inner integral. If f(x) is L? the
inversion is justified by the thean convergence of the inner integral,
. and the result is a case o{ Parseval’s formula for Hankel transforms.

Having obtained tl\ mversmn the rost of the proof is the same as
that given in § 8,18,

Putting y < /8¢ = (2nz), (9.13.3) gives

Po) 007 sl 2\ Ah@ . Tl # VL)
M TALY Pl 2 gy — == dt —§
21T\_\,g\.. { (4472;3) } ¢ a f P(‘irrg:ﬂ) ¢ d
A& 0 i}
N oWy '

2tV + 1)z Sr{tn+1ay

\ B 2(4) S AR CAUPR
Uf ( ) = Z 211-4!11.::) {T(O)+ e } !
= . A2} Al2mfint1)a}]|
gﬂ{?’(o)‘{'...-i-?‘(?l)}{_%‘\;(nx} - 2 lint1)a} J
' 2mv{(V + L)
- 1T, (8) dt
drx

t See 6.g. Mordelt (2), Potter (1),
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= S BC ooy L -
=0 .

2y (i)
S {-—27.-\/{(N+ D) A 2y {(N + 2] +2 J Ji(8) dt 4o (1)}
for N -> <o, x fixed. The terms involving J[2m J{(N 4 1)a}] ave
) ) — (N 1 AR DS gy,

. 2 {(N+1)e)
and, since f Jy(f) d = 1, we obtain finallyt
Pa) =V ;13%) {2 f(na). (0.134)

It has been proved by Walfisz and Oppenbeimlj that, if iﬁn) is
the number of representations of # as a sum of p squares,ang

_ : 17 <
Plx)= o ) — ek, ')
W)= 2 i) AL DN
B () — atr S5 2 ),
then P (x) = «tP Z vy J*”{%T{"&m)}’

the series being summable by Cesaro’s Yreans of sufficiently high
order, It follows that 1 :f:;' .
m—l‘-i‘p{Pp(_’.)-—-l}
/N ~ . 27r

belongs to Ry If we take p =3, and use Walfisz’s result
Bz) = Oxtt*e), we ﬁng\lhaﬂa f() falls under the obvious extension
of Theorem 136. Thigds hot true for any larger p.

If we take p == ‘lé’ivé find that

\4 1/ = x
2 =i em)
where {fe{]gj's%he integral part of u, belongs 0 R;, as may be verified
directlyss :
‘1?1\4". Formulae connecting different classes of self-reci-
procal functions.ti The simplest such formula is given by
RuLE 1. If f(x) is its own cosine (sine) transform, then

- gl@) = Tf(t)e“"‘ dt (9.14.1)

is its own sine (cosine) transform. o
+ See Hardy and Lendau (1) Herdy (15). 1 Walfisz (1), (2)- Oppenheim {1)
1 Philtips {1), Hardy and Titchmarsh {6), Mehrotra (1), (8).
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‘Supposing, for example, that f(z) is its own cosine transform, we
have

o

J(%) J. g{f)sin =t dt = J( ) Ism xt dt jof(y)e—fy dy
- J (%) f Fo) dy f e sinat dt
- A/( )ff x2+y5 «Z.\'.\

Now J ( )x2+ 5 18 the cosine transform of e~ Y, apd f(y is its own

cogine transform. Hence Parseval’s theorem fd f\: cosine transforms

gives
1 [ [ -

and the rule follows. The exarmple; Wath J() = sech{t,J(3m)}, g(z) R,
has been observed by various auth,ors Rule 1 is a particular case of

Rure 2. If flx) belongs to R}L, and

etiw
He) = g | PGBt 19T b oy ds,
e (9.14.2)
where x x(8) = x(1—s), {9.14.3)
then \\ 9(2) = [ fy)kiay) dy (9.14.4)
bezcmgs}b R,
A, general formula. for f(z) of B, is
\ c+ fo
= om [ Tatiutioponras,  @109)
where (s) = $(1—s), By (2.1.22),
&+ feo
1 .
= 5 f 2T b bl (1~ s)2°D (3 Jut-38) X

X D+ bt Bo)xle)e— ds
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ed-io
— o | PTG b
where  dhyls) = BT+ 3u—1)D(d+ip-H il —s)x(s). -
Since dy(8) = Py(1—9),

g(x) is of the same form as (9.14.5), with p replaced by v. This
proves the rule.

Since the rule is symmetrical in x and v, & kernel which transforms
R, into R, also effects the converse transformation.

Taking p =}, v = —%, or vice versa, we obfain

¢o|-im .

2% J ' {(s)x(s)x—* ds, \‘~\

S

Ez) =
e—iw A oy
where x{s) satisfies {9.14.3), as the general kernel which ’tlja,fné{f‘orms R,
into R, (or vice versa). Rule 1 is the case x(8) = 1[2%(7?\‘Taking
1 1 N3, -
KO = ST Taa— g
we obfain x\
k@) = i), 2k, \FPeeK(ie)
as other kernels with the same prqpéj’bj;.
Taking y(s) = 2!+ -1 in the gefleral rule, we obtain
k() = 2, 4,(@),

and, in particular, Ku(:g-:},tfaz}lsforms R, into itself.

\) apv—ip—

Taking S £ I
we obtain \ k(z) = gt @)
s 'S otp—dv—t
snd toking ¥0) = [ A R B’
we obfain By = B, ().

Waturally any of these rules, once they bave been obtained, can
be verified in the same way as Rule .

9.15. Other rules for such transformations may be obtained by
combining those already known. For example, if we iterate Rule 1,
we obtain .

@ o ; )
glx) = J. TV dy J f{t}e'u‘ daf = j t‘—{% dt {9.1».).1)

0
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a8 a function which is R, (R,) if f(z) is B, (R;). This transfor

mation
is not of the above form; but it is of the form

ooy =1 f soe(?) au, 152
; |

with k(u) = 1/(1+%). Thissuggests a general rule for transformations
of this type.

RuLz 3. If f(x) belongs to R, and N\
¢+iw A ¢
I ¢\
o) = s | T+ br @+ b don(elbtis,

- (9.15.3)
where x(8) = x(1—s), then (9.15.2) belongs to R;,E'. '

M\ N
If f(x) is given by (9.14.5), (2.1.17) gives )

e+im

1 x'\\':
o) = o | 2T pE R i) as,

where  gu(s) = D+ fu-+- 3G+ 2u—daWh(s)x(1—s).
+ This verifies the rule as before,
In the particular case o= 5, (9.15.8) reduces simply to
. m{ 1 e+iw
Sy = L f Y8}z ds,
O\ . e—~im
where x,(s)a%y (1—s); and this is equivalent to
iIN”
o fc(l) = k(). (9.15.4)
N
€

a@

#

Heng

. ZT}LRULE & If fz) belongs to R,, and k(z) satisfies (9.16.4), then g(x),
N\ efined by (8.15.2), belongs to R,

1t is easy to veri Yy this directly in the usual way.
Particular caseés are

k)= L
(1 _i,_xa)lj:x.
or, more generally, kaz) = (T%fﬁ—_;
T

Taking f(x)

= 2He-82' which belongs to R, and o = 2, g=1-»
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1 ¢ Sy y=1
gie) = Efy”*e**” (%) (H—%E dy

o

we obfain

— pivele J' pr-lg-il' i
(putting w*-!—y — #2) as a function of R,. In particulart

ei®” | e—if' (i

Bt—my

is B, N
The formula g(x) = ity fy”“h(y)e*wu dy \ N
for functions of E,, Where hy) = k(1/y), 18 derivable ﬁgm t'he above
rule by takmg flay = wiie ¥, and making obkus‘ ‘transforma-
tions.
Taking p = —%, v = 5 we obtain 7 \d

Rure 5. If fx) belongs io R, and \

e+im
1
. _“a

where x(8) = x(1-3), then \

\g(x)' ff(y)k(%) dy

belongs to Ry )7

For examplg;,;f\;;(s) = 1, then k(x) = 1j{1+=?), and
.“\‘.
Q W g
R\ gla) = &
»\‘~; v d 2+y
15.4(s) = v/ D(3-+§o)T(L—1s), then
E(x) = (1—2F)” -+ (0<x<]) 0 {(x>1)

d;
and _ glx) = .\I{S;)— :2 )

There are, of course, 8 nmlacr: rules for transformations from R,

to R,.
t Hardy (1)
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9.16. The main interest of the above rules is in their forma]
appearance. A considerable variety of theorems about them conld
be constructed.t We shall give here only one, applying to Rale 2,
The reader should have little difficulty in dealing with the other
rules in the same way.

THROREM 144. Lef f(x) and k(z) be L2(0,00), and let f(x) be R, Le
= k d 9.161

g(@) 6ff(y) (ay) dy (9.16.)

be also L20,00). Then, in order that g(x) should be R, it,e'{s:(wcesmry
and sufficient that R(s), the Mellin transform of k{x), showld "be of the

form /06) = PTG+ PE+b o) (01169
where x(s) = x(1—s), and the right-hand side w5 LAL—ic0, i),
By Theorem 72, with g(x) replaced by k{xph

3 R e
[ s ay = | wi -y as
o PN

The Mellin transform of g(z) is t;be‘;jéfore
G(s) F(1—s)Rs).
By the analogue for R, of Theorem 136
BlaY= 26T (1 bt Be)ls),
where if(s) = ¢(1—\QQ~I’f g(x) is B,, we have also
SO 6(8) = 280 Lot Ls)an(s),
where w(s} ="w{f —s). Hence
07 ag o HTb )
& HRL(+ 1))
whichus of the form (9.16.2), with
4 '\. ’ S
~ x(8) = V2D (3t 36) D@ b Ls)u(s) (1 —s)
satisfying y(s) = x(1—s). Hence the form (9.16.2) is necessary; and
the reversed argument shows that it is sufficient.

9.17. A series formuls for self-reciprocal functions may be
derived from the function

R R e |

T See e.g. Mehrotra, {I).



517 SELF-RECIPROCAL FUNCTIONS 233

which belongs to ;. Let k(x) be & kernel which transforms R, to &,.
Then, by Rule 3,

etiwo
. 1
) = gy | ZTEITG-+ b+ ds
1w
1 g+t
md k@) = — | ATOHINE o o
=i
is a kernel which transforms R, to E,. Hence 2\
g@) = [ Jly)eyk'(2y) dy <O
UCD i) R };s../
= z x j {~-—n+ l}k’(xy} dy t
2 ‘€
wml o —1)viem vt NS

\ ¥/

aviem 1 \mffﬂﬁ]
4

:2I[(._(?’2’_”}._n+1)k(xy)](n_lmm 4;1 f k(xy)dy}

(n—1n{2%)
—Zk{waw} o )mj(

should be a function of B, "
The rule may be verified as, ib]bws Let

l\wzw
k(¢)=-2§; j K(s)x—ds (c>0)
Then \u ’ “:‘“’
O\ e+ i% o
3 ) = gy | ) D amyeds >
o e
Y 32_11;; f R(s)(2w)-*3§(s}x’3ds
1 c+1.oo ()
- f Re)2m) e s + o
. -:a:'ico
Hence g(x)z.-é%;: f R(s)(2n)-l’§(s)x"d8.

=i
4362 T
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If %(x) transforms B, to R,, then by Rule 3

R(s) = PTG+ o+do)xs),

where x(s) = y(I—s). Hence
G(s) = Ss(sH2m)#L(s)
= 22T+ dv+88)xy(s),

where ¥1(8) = 7 ¥ (1) {(s)x(s).
Hence 18} = o (1—8}
by the functional equation for {(s).

_ A
Hence g(x) belongs to R, by (9.1.9), R
As examples, let k{x) = e#, v = . Then \\}
."\
1 1 \ \“/

gz} =

eg;«(zﬁ)“__lmx\/(?‘ﬁ) x'\ Y
ISRssaBm§gl2(3} \

Taking k(z) = Jy{z), another R, function 15}\’
2 V) 1 1
2 Jyfney(2m))— %) J (_) B - L

rkw Vizm J—2nm) 2
Taking k{x) = :r’l”leH(x), we o'btami
1
z {nyf(2m) K, ,,,%{?zx\/(?w }— —Pi )
as a function of R,. N\
1 Bee § 2.10 (vx) \\ ' 1 Watson (1)
’ \.'\\.t

7N
£ )
oy S/

7
</
)
N\
. \w
R\
N
NS

\/"\‘/



X
DIFFERENTIAL AND DIFFERENCE EQUATIONS

10.1. Introduction. Ix this chapter we use Fourier's integral
formula and its related formulae to obtain the solutions of certain
differential equations. The general method is to transform a
differential (or other functional) eguation, involving an unknown
function, into a relation involving the Fourier transform, or some
similar transform, of the original function. The new relation mays
be simpler, and so lead to the solution. )

That certain differential equations can be solved by meéns jof
definite integrals was shown by Laplace and Cauchy. The main
object of this chapter is to present some cases of this faqai‘iiéfr method
as exercises in the use of Fourier’s integral formuqu:‘\(‘

The chapter is merely a callection of examples, illustrating the
possibilities of the method. Most of them are familiar, and the solu-
tions are to be found in standard vru:n:lg;g-:v\x The methods usually
employed, however, are more or less téntative, and often make no
explicit use of Fourier’'s theorem. ,Here we aim at solving the
equations subject to simple condi@ioﬁs which justify @ priort the
process used. Q3

10.2. Ordinary differential equations. We shall first give a
method of solving ordifary linear differential equations, due to
Bromwich.t The mqtﬁ@\d, in its rigorous form, depends on Theorems
33 and. 34.

One of BI‘OI;Q’#’:i(\:h’S examples is

»\ 22 d d B
SE

N d dt d
~O (&;*"G)H (d—@_ &—t)y ~0,
where z(0) = g, #'(0) = %y, ¥(0) = Yo, y'(0) =y, are given con-
stanta.

It can be seen a priori that 2(f) and y(#) are integral funetions of
exponential type. For example, by further differentiation and
elimination we obtain
x’”{t)+clx’(t)+ch’(t)+cs:t(t) = 0.

t Bromwich {1).

2 &

(10.2.1)
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Hence 2} Loy APHE) |- 0y WD) -0 ) = 0,
If |m)| << (KO for m == 1,2,...,242, it follows that
[ < (ley ]+ les HE @) < {K (1)jns

provided that K(f) > 1, K({#) = |¢;| ...+ leg]. Hence x({t) i8 ex-
pansible by Taylor’s theorem, and
Z {K{O}}HHJR BK((})m’

=L plnd #
0] = | » O <

80 that x(t) is an integral funetion of exponential type Slmﬂaﬂy
for y(1). RN
Hence, by Theorem 33, e\

o W/

z(t) = ,2’1?% f E(w)e™t dw, y(t) = %{‘n(&))ewﬁ duw,

Chap. X

\ (10.2.2)
where £(20) and n{w) are regular for |w| > R sav, and zero at infinity;
and C'is a simple closed curve surrounding [w] =

The differential equations then give

[ {s(w)(w*—m)—n(wi“&)——1J}ewf dw = o,
o

(10.2.3)
j {E)w+ ﬁl—i*n(ﬂ’)(%z-—w}}ew‘ dw — 0.
Let
g(w)(ng—4w) n(w)w—1) = plw), 94
S(%nb‘(w%—ﬁ)—]—n(w)(wz—w) = g{w). ] (1024

Then p(w) amd ‘g(w) are regular for |w] > R, except for poles of the

first order(at’ infinity. Hence, by Theorem 34, they are linear
functlom w, say

\.\ % plw) = a-+buw, qlw) = atpu. (10.2.5)
Ajso from (10.2.2),
\: a:u———J.f(zb)dw xlq_ﬁ[f(wwd%,
i
and hence, by Laurent’s theorem
E(w) = Ty LLJ (10.2.6)
[ '

+0 E
for large [w|. Similarly,
oy <80 25 of 1), a027)
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Substituting (10.2.5), (10.2.6), (10.2.7) in (10.2,4), and equating
coefficients, we find

plw) = (w—8ro+2,— Yo g(w) = go+{w— 1)+
Solving (10.2.4) for £ and %, we obtain

_ wp(w)tg(w) _ —lw+6)p(w)+(w—dwig(w)
E(w) = (w+1)(w—~2)(w—3)’ nlw) = (wz——l)(w—2)(w—§} :

The values of () and y{t) now follow from (10.2.2} by the calculus
of residnes. For example, the term in x(f) corresponding to the pele
atw= —1is

O\
—p(=D+e(—1) . _ 8= gty O

12 12

7%
™

Naturally the method is quite general. Another »g'qn?ple example is

dw |, do

L on® L nte =0, N
T T
dy dy e
PR TR Sy

where 2(0) = 0, 2'(0) = A, y(O):ﬁ—f O, y'{0) = 0. This is given by
Jeffreys, Operational Methods, §3.31, as an example of the operational
equivalent of the above method,
PR
10.3. If we are gifen a linear equation whose coefficients are
polynomials of degtee m, and treat it by the above method, we have
tointegrate by pazts m times, and the transform of the original function
satisfies a differential equation of the mth order. Consider, for
cxample; Beéssel's equation,
\\ o
\ d% ldz ¥
Ce s l—-—le=0,
N dx2+x dx+( 9:2)

Switere v = 0. Putting z = 2¥y, we obtain

d?y  2v+1 dy -0
Wi T
Let us seek a solution which is an integral function of exponential

type. Let it be
1
Y= 5
¢

plw)e™ dw.
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Then 1
—= ’ L0
Y = 5 f 7 (w)es® duw,

c
d; 1
?i% = %f n{ew)we™ dio,
&

1 ’
x% = f {207(w) + 1wy w)}e™ duo,
8]

Hence f {(1+w?)y’ () — (2v— Dy (w)}e duw = 0.
o

The factor in-brackets has at most a pole of the first order at infinity;
hence, by Theorem 34, 'S )\

(1108 10)—(2o— Do) = -\~
d
) =ty [ B P
 Bince n(w) is regular at infinity, & = 0, g,p{i;

A7 4
j— 2hpads J____ =
Hw) = a(1-+tw } :* Ry
where we take the branches .qf;’(i;ﬁ-l—l)”“% and ({24-1)+ which are

real on the real axiy, and suppose the plane cut along the imaginary
axis from —i to 4. Then\

a . - g
= — 1w?p—tpme ¢ P Ty O
’ @j e | i
This can be’rej(itlced to a more familiar form. Let w be a point on

the imaginary)a}'}is between 0 and ¢, «' the same point after a circuit
has beéq‘,gﬁde round . Then

’?(w).—‘*hiwé) _
N\ ar . d
y o= afl 2yr—i — 2 L gedmite -} 2w —% S —,
O T [ e | @i
N . . @ .
Now J. _._dC__ = —g-2miv4h 4 ,
p G 07
whel;e the suffix denotes the branch obtained by cuts from —io0 to
—1tand ¢ to ico, Hence' . :
' . dé —%
"?{w)—"n(’w ) = G{l—-f—w2 v—% J. — 2 aK 1+w2)v k
" ] ek
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where K depends on v only. Hence

1 1
y = K J (1—v2p—teire dy = K, J- (1—v%y—t coszody.
—1 0

10.4. If we put z = vy, 2> = 4 in Bessel's equation, we obtain
2
ti—-g-{—(l—-v)%—i—y = 0. (10.4.1)
The solution corresponding to z = J,(2) is not an integral function
for general v. Let us look instead for soluticns y{f} such that™
y(f) = O(e) as t— oo for some positive ¢, and y(0) = 0. N .
Such a solution is representable by a Fourier integral, by Théorem
24. Let f(f) = y(t) fort >0, and f{f) = 0 for? < 0. Then Fr(w\) = 0,
and F (w) is © R, N
Vi) = L f y(tyeit dt LY (1042
(27) J

[

for v > ¢, Sirice »(f) iz continuous and of bngx\(}éd variation in any

finite interval, Theorem 24 gives N\
intAd CNY
yt) = —lim [ ¥ (w)e dw, (10.4.3)
\.JI(Q‘JT) A—rto ) “; 3
for{ > 0,a = ¢ R\
Integrating (10.4.2) by pafts, we have
."“\ — o
N-’(ij‘]{’{w::')' = — —l— y (B)et di, (10.4.4)
. w
O 3

the integrated 36‘15}11} vanishing. Similarly,
\\‘?;’/’(2«)17'(13) = [ ityle)e b

0

...\" Y 1

@ =— .[ {yle)+ty (t)je™ dt. (10.4.5)

0

—em

Integrating by parts again,
JemT ) = g | YOO
4

—

o L
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by {10.4.1). The last 1ntegra1 Is convergent since (10.4.4) is; the
integrated term

must therefore tend to a limit as ¢ > o0, and the limit can only be 0,
From (10.4.2), (10.4.4), and (10.4.6) it follows that

Hence Y{w) = Kw-v-lelin I\

e—mt+mw ,\:\'

ylt) = *(27;) f T i'} '
This is in fact a multiple of ##%.J,{241), b (7.13.9
Pa® O 127, ¥ ( \\

10.5. A similar method may be used to solvedifferential equations

with a given function on the right-hand mcte To take a simple case,
consider dty

\
gt T = $ONE > 0),

where all the functions concem‘ed are of the form Ofe¥) as ¢ oo,
Ifv >e, N

W

a3

J(em)Y () = i"y(i)'efwf di

iw w? ol
u

s J y
p \s,. , o
b ‘\: _ ¥yt 1 f ¥ (t)etet df,
o _

mtegratmg'by parts twice. Hence

NS
) = f Bojetde = o f{y O+ Ry (D)ot dt
N

7 O _y©
O o ~iEm T
ie. Y{w) — q)(w) 1 dey(0)—y'(0).

—u? (2} T kst
Hence for a sufficiently ]arge in particular @ > ¢,

1 il O@w) 1 dwy(0)—y'(0) e
(Z)ﬂ A{kz-—wz Jem T RS wE } -

dig —

y(t) =
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Tn the first part we can insert the Fourier integral for ®(w), and
invert, by absolute convergence. We obtain

4 0
eiw(z—!}

BE—w?

=

@ [
: 1 11 .
- f () du aw = J. $lz)sink(t—z) dz,
o ¢
evaluating the inner integral by the calculus of residues. The remain-
ing terms are cin kit

y(0)cos &t +y'(0) T

Hence .
y(t) = y(0)cos It+y'{0) sn;ckt_i_% J. Slx)sin k({—zx) dx, O
the usual solution. ’ A N,

N/

10.6. Partial differential equations. Obiain the solution v(z,t) of

v &t 4%

w_E (— o0, t > O\ 10.6.1
w8 RS >00 (10.6.1)
such that iz, 0) = flz) (—w© <z < o)

This is the classical problem of the flow-af Heat in an infinite rod
with a given initial temperature distribution; "» being the temperature,
¢ the time, and « the distance a,long,t}i’e rod.}

Formally we proceed as follo:.’{s}f:Lét

-+

V(g,t)i% j ol, Hei d.

W
Then av 1 ¢ &\3 1 ¢ o
’ O aem _.,._~:..: » 4 ._.v xf g J. _— Gixf dx
ot 2Ry J. ot d Jem) J ot
2 £ 3
A\ . izt do = — &2V,
'& Jem j v ¢

o

in%egi:;i{ing by parts twice, and sssuming that the terms at the
lihits vanish, Hence '

7(5, t) = A((S)B"f",
where A4(£) depends on £ only. Putting ¢ = 0,

o

—_ 1_ zf = f
46 = 75 [ st ae = F@

-

+ Riemann-Weber, 2, § 36; Corslaw, Heat, § 16.
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F being the transform of f. Henee
Vi§.1) = Fgle,
and the solution is
1
(2m)

v(x, 1) =

f Fig)e-t1-iet g,

or, in terms of f{x),

o

oz, ) = _21; f o—EU—ixt d¢ f f(u)effu du

O\
— L ff(u) du f ett-itengg (O
27 O
1 ~ y ..~,(":‘:
-t -l gy, D) 10.6.2
s | S e\ (1063

That in fact v(z,f) > flxy as t—>0 fol.lqus' from the theory of
Weierstrass’s singular integral. The mothod would be justified e.g.
if all the functions concerned belongyt (oo, o). But the follow-
ing procedure is much more general.

Suppose that |z, 1)| < Keota! ﬁriéome ¢ and all t, with similar con-
ditions on any of the partial derivatives which occur. We shall say that
such a function is of exponential type.

Let v(z,t) > f(z), as. £ 0, for almost all values of z. Then
flx)} < Keel almos{'\évérywhere.

Let, \

]

— 1 mx: i — 1 - fd
ASE @j~z(x,t)e Ly, VL) — 75 f w(x, et dz,

—

7 < b

Naw if 5 > ¢,

\\;.. \ ?_Vi“ ooé?i mc 3 maﬂv m;
J(2n) il de = P d
0

{
few 1% . Few .
= | —— ‘l.'L‘g —_ . —_ m:c
. [8xe ] zgfaxe dx
& [H

8 . el " o
a—ve”’gL —i{fvetet]" . r2 f velxl dy
o

where Z\%}‘H?} “Then V, exists and is regular for 4 > ¢, V. for

X

= _t’m(o!_t) +’*‘:§’L‘(07 f)— ZE\/(277}V+(Ca £).
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This is an ordinary differential equatlon, of which (e.g. as in §10.5)
the solution is

L0 = At j {2,(0, 7)— iL0(0, 7Yjel™ dr.

Making ¢ - 0,

AQ) = EmT,@0 = o )_ff(xe“‘dx— R0

by dominated convergence, since v(z, ) - f{x) for almogt all z, and A

lwlz, t)e‘z§| < Kele-ne, N o
¢\
Hence V.{L,1) = C)eh‘i"—x(ﬁ, £), ~’\ ’
where x{£, ) is an integral function of { which > 0 a8 £ >, 5j: .
Tn the corresponding argument with V_ the mtegmted ferms

appear with the opposite sign, and we obtain "'\

V(L 1) = F (e +xll, t)\“
Hence, by Theorem 24, “ \s '

0@, ) = o im f {Fi{De- ﬁ"—x(z,t)}e—fﬂdw

';/(2 Yaer .
tb-\'—}t

z i j (F (oYt x(, )% dE.
1b—-

xf(

The contribution of y 1§\plamly 0. The contribution of F, is

il “jﬁf“" it d{ f Fluyeed du = J' ) du T mg-{"-ii(a:—u) at

(mvertmgﬁw absolu‘oe convergence)

) Ty
Q¥ = 5 f ke
Bimilarly for F_, and we obtaln (10.6.2) as before.

Wa do not know whether, for a unigue solution, it is necessary to
assume that »(x,f) is of esponential type. But some condition
bearing on v{x,?) and not merely on fx) is necessary. Tt is an eagily
verified rule thag, if v(z,?) is a solution of (10.6.1), then so is

1
& —ia:'I pag——
i-te ‘v(t, t)
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Hence, v(2,t) = 2 being a solution, so is

at-te—ta,
as 18 easily verified; and this function tends to 0, a5 {0, for every
%, without vanishing identically. It is of course unbounded near

z =0 as {0 {e.g. for x = %), so that it does not satisfy the con-
ditions of the above analysis.

10.7. Obiain the solution v(z,1) of

&y 9% N\
%= 5t (x>0, t>0) A
such that v(,0) = 0 (x > 0), 2(0,£) = f{I) (t > 0).

This is the problemt of the conduction of heat inla semi-infinite
rod, initially at zero temperature, the end being sitddenty raised to,
- and maintained at, a given temperature f@E) “’\

For a formal solution let )

2 3 \\“
V6. t) = J (;) f ’b(x,t}sl‘n x dz.

BVR B 5 wav ) ":.; N/
%= (—) f — sin€rdz

r 12 20N
LN

Then

2\ foo |
= “/%)f a—x-gsmsxdm
Lo

O 2 mav
.’.:-:}ﬁ,‘/(;)fjégcosfxdx
\ _ 4

N
N\

% J _J(g)g[[ﬂcosgx]:+§fvsm5x dx}

O ~ JBera~ew,
o =l t
Hence W, = A(g)e-$14+ J (%)ge'f"f e v f () dus.
Since v(x, 0} = 0, Vi€, 0) = 0, and hence Alf) = 0. Hence

o ]

2
oz, 1) = - fetsinfn df | o uf(u) du
e |

T Riemann-Weber, 2, § 40; Carslaw, Heat, § 23,
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2 ¢ ]
== J. flu) du f EetuNgin gy d¢
1] 1]

= =z g ) tp—tEYi—u
2’_\#3rff(u)(t o)ttt gy

o
That this tends to f(z) in general follows from Theorem 13.
For a rigorous proof suppose again that v(x,?) is of exponential
type. Let

V(L0 = ﬁ j o, 0o dz (4 > o) N\
Then )

Jem% — f 2 i e j Preds O
= —0,(0, 1) 4Lf(t)— J{MW

integrating by parts fwice. Hence O
PN

V0 = A poy @ f s 150310, w)}el™ du.

«/(2 )

As before, A(L) == 0; if flu) a.nd m(@ u) are bounded in a finite
interval, the other term is \\

ofe-++ ] e du) O(l¢l)

ag & - J-ao. Hence bx\l‘ﬁ theory,

1 d o e—ir__ _;t; —u (0 I
o(a, 1) = 7\ 2| e f (Lf)—v (0, w)jebs du

for & > 0\w<h1]e the right-hand side is 0 for 2 < 0. The repeated
integral \is ‘absolutely convergent, and we may invert, and then
replace by 0. The term in f(x) contributes

\ 27”1 f flu) du f (1—e-it)elte 4
1 J j‘u){1+3 1et- ,\f

= o dx

= f e

il
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The contribution of the other term is an even function of x. Changing
the sign of x and subtracting, we obtain the same result as hefore.

10.8. Oblain the solution of
o _ o
at  ox?
where v{x,0) = 0 (x > 0}, ¢(0,) = f{) £ > 0).
Proceeding as before, we obtain '

-

?

K N\
QYE: 2 éaE—v—oazv sin &x dx A .
é )} \aa? O\
’ oM
= A/(E)gf(t)*fzp;wmzﬂ. . N
. . o , 9\
Hence Q¢
= a@e iy | (g)fe—(f’a,asy\[r A8 ()
7, "
K2 :
A(£) = 0 as before, and A\ ¢

£ ) w:”’ v
v, f) = % '. Slu) r{u’f Ll +oNugin £ dE
o S S

ad
NS

ﬂ"’s
w} J)(t—u)te-s-w-izto-n d,

The rigorous solutlon may be obtained as before

10.9. S@&r
oy &%
\“, 'EE (Txi_m% [O<x<3),
\
u@{etmtn(xwo t>0),0=0_(=0, 0<x<3),_tmd
@ b 8
~ a; =1

Here we take ¢ as the variable of the Fourier mtegral and suppose
that fe{x, 2} << Keotl for all z, Let '

Ve d = o [ ettt g > o)

T See Jefiroys, Opem_ti&mf M‘ct}sﬁda, p. 70.
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Then

a2V g
z = it
ox? 2«) f aze’

S B LSNP 1
,21?_}[ ( +a v)e dt

_____ ‘& l! wpill i
.\/(27:')[ lo 4(%) f retdl + 7 w)f"““’;’d‘

= (@2—il)V.
Hence V = A(Z)cosh{\/(oc2—i§}x}+ B({)sinh{\/{e?—i{)a}. O\
When x = 0, . O -
V - 1td = —-—-—_.?.9__ “\'\}S
. % Y
Hence : A(g) = ~ e ’xt\\;
When 2z = I, —E = 0. Hence P }“

A(D)sinh{ (o2 —il) }—LB(ﬁ)coshi.J(a —i{)l} = 0.

. e Bm.h{\!(a —4{) Z}SIDh{\/(az—aZ)x}
V= i o s
vy  cosh{/(a? ——*a\g & =} -
L) {cos}N“(\m_f—ua.Z)l}
Hence for £ > 0 ..f."; ad {1] , } dg
\X ﬂvu cosh{f(o?—0)(@—1)} iy 46
vl 5 = j —coshigi@—i0f T

Here ar@::: —il) varies from %= to —3m, and the integral is
absolutely* convergent if 0 <@ < L

Henee

NN
N/
10.10. Obtain the solution of T
oy & ldv
v _tr 2 (im0 r>a
ot crz-i_r or =0 :
such that v(r, 0) = 0 (r > a), via,t) = [}

+ See Nicholson (2), Goldstein {2).

N\



288 DIFFERENTIAL AND Chap. X

Suppose that v(r, £) = O(er+l). If

Vir,&) = ﬁ f o(r, el dt (5 > ),

I,J(2 )(ﬁ 2-1_ V) Iave‘?dt

= [vell]”—i¢ f veilt d
' o

then

= —iJemV. A
The solution of this may be written N\
Vir O = AQHPIEOH-BOH “”{?’ ’(@ﬁ)}

HP(2) = Jfz)+i¥(z), HP(2) = ,Jg,(z)u_@}g(z)
Let § = £4ik, J(i0) = U = &-+iy'. Then
é’z 7}’2 . _k\ 7
ie. I’ varies along & branch of thls re\tangular hyperbola, say the
upper branch, On it O
Oy AB TN N Am’

Since F(r, {} = Ofe*) in the upper half-plane, we must have B({} = 0.
~ Also, asr—>a, }

N\

6> 75 f fwt dt = F(D).

where

‘ \..,;... e

Hence \~ A) = fﬂ%’

and th%snlutlon is

0} o
\\\ ot = J(z ), f PO ppagany

where }or < arg . fiil) <
For suitable functmns j'(t) -we can make k& — 0, and obtain the
solution in the form of integrals along the real axis.
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10.11. Obtain the solution of

& oW
&a_x_g—}uayz—o (x >0, 0y
such that 2 :f(;r) {y =00 < o),

p=10 (y_:b,0<x<oo),
=10 (=0,0<y<bh.

This is the problem of the steady distribution of heat in a semi-
infinite strip with the edges kept at given temperatures.t
Formally, let

Vi y) = ,\/ (%) fﬂ(x, y)sin éx dx. | \3 ‘:\ .

Then N

o
L2 Pa
J )fi-s-isinfx dx A
J .ya '.:.

\ ot K7,
—-A/ f—i—gsmfx dx N\

— J % [ug-z sin &x]j&j(%)&fg cos fx dx
[ J (%)‘fv 00%5?2—\}:—% J (g) £ f vsinfx dx
e, \

Hence K’%“A(f)cosh£y+3 (E)sinn by.

i

G
dy®

ERES

f

fi
———— ——
1S
T o —

[

I

>

Making y \gp; A — J (;) ! Faysinz dz,

80 that/ﬁf”) is the sine transform of f(z), 4(£) = F(£).
P@ing’ y=b,
A(&)cosh gh+ B(£)sinh € = 0,
B(¢) = —coth &b F(£).
Hence ¥, = F,{¢)(cosh éy—sinh £y coth £b)

sinh §(b—y) )
= s(g) Sll]_h fb :

T Carslaw, Heat, § 43.
a3pn ' U
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and v(x,y) = [|= 3(5) sinh f_(_(f__l)sm fx df.
_ sinh £5
-0
In terms of f this gives

. v(x,y) = —J‘f( u) d fsm:ixf}(lb‘fb y)sméxbmfu d¢

i
_b’ry J f(u)(cos(b—y)-n-/b-i- cosh(x—u)m/b
0 1 0
" cos(b—y )'&'/6';51'665@?_“%517—6 du _
That this tends to 1{f{x+0)+flx—0)} wherever lt #xists, follows
from Theorem 18; for
smhg(b—y) — et gbmnh}y
sinh & m.h &b’
and the contribution of the last term is elé&rly 0.
Suppose now that v{x,y) = O(e“) as ¥ — o0, uniformily with respect
to y, where w/b < & << 2afb.

N\

Let T y) = ;@)fv(x Yy dz,
-Where ¢ < 7 << 2mfb. Then '
J@n )—\: az”efﬁwdx

= —f S ¢ d

\“ . w
— il ¥ apile]™ iz .
._“\“‘ = [axe ] +iljve Jo —i—{zéf vetT d

~O" = g)HYEmEY,
where g(y) = ,(0,3). Hence

V(Z,9) = A()cosh {y-+ B()sinh fy - 2 o f sinh {(y—u) g(a) du.

' M&kmg Y — 0; we obtain, by dominated convergance,

_ il
A(l) = J(z}ffx)e de = F(),
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and making y —b,

]
0 = A({)cosh {b+ B(Z)sinh §b+4(-—21ﬂ)—£ J' sinh £(6—u) g(2) du.
0

Hence

. * _ . _ ¥
ViL,y) = F(C)mﬂb& ¥, j;;‘;g%mbgb sinh Zug(u) du —
0

b
__ sinhly [
J@msinh b sinh {(b—) g{u) d.
Hence ife<a< %T/b, b
1 imtow ginh {{b ) O\
———— F _—-—-:_. _,,‘;z X \“.
‘J(%)ia—'-[m (C) . S]]lhzb ’ dc + O \.
¥ tat o K N
; sinh {(y—b)sinh {0 _ir )
g fowan | SEEERm s8R
2 af w»_[ - {sinh b \ _
b ia+x AL .
1 " ginh gﬁn‘hg(b_ﬂu) ia
—5 j gla) dum-[ __%}Tg ite gy
’ ¥ - L)

=o(zy) @30, 0 @<0.

Replacing « by —2 and subtrqctiﬁé, we find that, for z > 0, v(z, )
is equal to the above expression with ¢-ile replaced by —2¢sin {z. In
this form, if we replace a by\0 in the last two terms, we obtain 0;
but if @ > w/b, the poliéb.g — infb gives a residue term of the form
O KsinZsinh T (10.11.1)

A\ b b
In the firstAetm we may insert the Fourier integral for F({) and
invert, by"s\ﬁ}a\dl'ute convergence. The result (again allowing for the

pole at’ g:.;k arfb) is ®
| Fwxtan) du,
a

1 . 7y 1 1
x{u) = o sin—= - —
2b b (cosﬂw+coshﬂﬂ cosuwﬁ-eoshx—'i_—uw)
b b b b
2. _ﬂy_— N ‘Ex_ —mrifl
F—_gsm A sinh 5 e .

We obtain the same solution as before, plus & term of the form
{10.11.1), whichisa golation of the corresponding problem withf= 0.
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The solution in this case is therefore not unique, un]ess we make
some hypothesis which excludes such a term.

10.12. Obtain the solution of

%i%=£% (—o <& <o, t>0),
such that y(x,0) = f(z), y{=,0) = g(=).

- This is the problem of the motion of an infinite string with a given -
initial displacement and velocity, ¥ being the displacement atdistance
x along the string at time £. .
~ For a formal solution, let - : A N,

Y@n#ﬁafy@m@@§§
m\'

Jmﬂf.éfm

= m“f it dx.
v,

mtegratmg by parts twice. Hence

D= A{£)cos £t B(é)sin &,

\\
.and dearly A{zj}“ F(&), £B(£) = GQ(f). Hence

Then
. 32

[xa)

- ) idn gt |
= if - i dE,
y(:c t}. W—) f F(f}cosfte d¢ + J; smfte £

The ﬁi§n term is

f fe i i f Jtes du == §{fe—0)-+fla+0),

and the second is
-1 ‘I?sin o > :
] e [ gwetnan

i \ x4 ..
f g(u) du J'sm & CO?@:——_@L) =1 f g(u) du.

t z

:w—-
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art§

Henco  y(zt) = Hfle+)+i@—}+3 [ glu) du,
xz—t

the classical solution.
For a nigorous solution let y(x,t) = Oe?), and similarly for the
partial derivatives, Let

17 e 1T
Y0 = J(gajy(x,t)ei % L= o | e

where Y, exists for 7 > ¢, Y_ for 9 < —¢. Now

o o 20
\f(2w)aa§;*-‘ = J 2;—2-?:3@ dae = J.azye‘zxdx Oy

[ (i N
« \/

=[] it | :e;efj?fi'?‘:
= — ()P~ B 2mT
where ¢{f) = ¥.(0,8), $({t) = »(0,1). Hence ’::\\J

W

H -~
Y, = A()cos {1+ B(L)sin {t— «72?}7?)2 j 0Lt w){le) i)} du,
g

and the initial conditions give 4{;@’)?‘5:_' F(0), {B(E) = ¢ (). Then
Y, (0, 1) = F(Dooa i {-1G,({)sin L+ (L, ),
where y is an integral fm}ctmn which tends to 0 for [ = {41k,
£~ oo, Similarly, N7
Y. (i.t, )r«F (§)cos Lt {16 _(L)ein [i—x(L, 1).

Now \ m-h\ B4
y(x,t} 3; f e dl - ——.— hrn f Y. (¢, tle-4= dL,
‘\/ ))\-—rco o +(‘: ) 'J( )
whergq > ¢, b <~ —¢. The contribution of x(¢, t) to this i 0, The
cofitritiution of F is
0({ {3+ A

«/(2 },\ f F({)b{e- sy g-itie-0} 4l +

b+ A
o s in j F(QMe-Ber o) af = H{flw+)+Sa—1).
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'The contribution of @, is
’ @ {a+ oo .
g eman [ B g
2 _ 4
1] ig—w .
(inverting by the bounded convergence of the l-integral). The

- {-integral is 7 if a—¢ < o < #+-t, and otherwise 0. Similarly for -
G_, and we obtain the same result ag before,

10.13 Obtain the solution oft \

oy oy O
B0 O<z<l >0 N

“such that 9(0,4) = 0, y(l,1) = 0, y(x,0) = fx), an@}g’;ﬁm, 0) = 0.

This is the problem of the vibration of an elas’éié’striig with fixed

ends, y being the displacement of the string at distance z along the
string at time ¢, o N
Suppose that y(z, ) and its Jerimtiveg@ré’ O(e) for some ¢. Let

@ )

Y, 0y = -~ iz, ettt dt
_ (&)}
for y > ¢. Then RN

Vi@ )Zﬂz= a—tglé?"’dt'*fazyewdt

@
l.l’ . . i
2O _ 3y al” %
N '.[3‘810 zCJate dt
\w' . 'm o ) .
&= ~Hllyet]y — 2 [ ye @t — iffiz)— 2 Jiem)Y.

A Y = A({)cos Le+ B({)sin Zm+—i--ff(u)sin {x—u) du. R
: . : T AJ(2w) J o

The initial conditions give ¥(0, £) = 0, Y{l,{) == 0, Hence A({) =0,
and . . : :

. . . i .
: _B(C_)sin_n CI"F;T;?) f sin {l—u) f(u) du = 0.

- Riemann-Weber, 2, 885, -
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Hence
__ b enie :
Y = Jemsnd ff(u)smé'(l u) du +J{2 )jf(u)smg(xﬁu) du
. - .
_J{;«) Smsfxg b 2 f ftw)sin fu du —
2
1 sinfx A
— Tl f ftulsin {0~u) du.
Hence - -

'\

N

o, 1) = L J‘ smﬂl x) “‘5‘d§ff(u)mnﬁu du - A\

L]

+§11.‘;;, .[ Zi‘lgeﬂadg f(u)sm?,’(t—f}du (10.13.3)

n—m

If we replace ¢ by #+-21 and aubtra.ct wolintroduce a factor
2¢sin {le-*¥, and the resulting integrals tend’t°0 when g — —co, if
¢ > 0. Hence the solution has the penodEl and we may suppose
0 << f < 2I. We then write )

1 f"’ e2ill

sinfl O\ +sm§3
and the contribution of the. last term is seen to be O on meking
@ > o. The contribution. o’ﬁthe first term may then be deduced from
Fourier's theorem. Fevgxample, the first term in {10.13.1) gives

iaf
1 f {g{@!—x—!)_eiﬂx-i)} dt f Flu)(ehu~—e~1) du.
4ar )
\!’a-'-w\"
The first ti:ms in each bracket give
' — bfel—a—1)
if. 23‘«—2.1 < t < 9—z, and otherwise 0. The complete solution may
be Written Hfe+0)+fe~)

where f(z) is defined outside (0,7) by saying that it is odd and has
the period 21.

If f"(x) exists everywhere and is continuous, the whole process is
plainly valid: In other cases the differential equation is not satisfied
everywhere, and the given conditions are not strictly comsistent.
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Suppose, for example, that J@) =2 (0 <2< 1, Hx)=1—p
H<x<D Then f'(x) = 1 or —1, and f*(z) = 0 where it exisis,

To cover a case of this kind we could restate the problem by assum-
ing that, instead of the differential equation, y satisfieg

(Eix)_z:x’ o (ax)mgxl “a | Y dx
&

for every ¢, for all but a finite number of values of 2, and that oy e
is bounded in  for each £. Then N

@ @ '”{ D () e
dx g, ox T=i, o \/(zﬂ}f ox, z=g, \OX g=z) 4 ™
0 N

£ NN
< 3
&y

- ﬁéa.f (35 [ v

&y
&)

/ \ﬁ; [2a) Ty

i [ g —_—
- % y dx\ﬁzﬂ ——— V&4 d | ydx
(2m) J Y I -\/(27")! J

. Ta AN
(&ssuming that d% f Yy dz — 0 ag'—> 0)

’\\' o o

&V S , ) - .
Hence o e'x’xfts’;, and I8 equal to E/C(%:)) —&%¥. The an.sqyms thgn
proceeds agsbefore,
' Anot,l{e‘lj\équa,tion'i- which may be solved in a similar way is
O

By oty
N° a9 O<a<y,

Q;fhére g Is a constant, y(x, 0) — gllz—3a?), 4(0,8) = 0, y,(x,0) = 0.

10.14, The problem} of the waves on a plane sheet of water, caused

by a disturbance of strength f(¢) at a fixed point (the origin), depends
on the solution of

32q5__ 25%6 I&ﬁ
E‘!-E_c(—EE\;E-I-;-ET-_) {'r->0,.t>0),

T Jefireys, Operational Methods, p- 59. - 1 Lamb, Hydrodynamics, p. 297
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where h,i%( 2m‘-—) fi©)y ¢ =>0).
Tet o(r,0) = 4(2 : j $lr, e dt.
oD 2%
Then (6r2+r 61') 4(217)[ et

1f the surface of the water is initially ﬂat and at rest, ¢(r,0) = 0 and
$ir,0) =0, and the usual partial integration shows that the right-

hand side is —{*®. Hencet ¢
o, 1 = 4QH [ €)+B(C)H}f’( ) A

\ ¥

Since @ must be bounded for (L) > 0 By =10. Also ™

F(O) = \/(% j f(t)o% dt = lim t J(%)rj ef%s}
= lim (——2-:#%) ~ Jim WCA({@T( 5) — 2nd(D).
Hence

P(r, ) = ——F(g)H(D( g)‘ . “
{ateo ’

#) = G Lol Ffiiﬂﬂ*(”g)e—‘if e

‘ ig+
I\ f(u) dut J- H“’( ﬂe‘ﬁu-" dt.
ig—
The inner mbeg{al is 0 1f t « u-t-rfc, and otherwise it is
2
N\ \\ J{(u__t)z__r:{/cz}
Hencq cosh-ietit

-1 sttt | )

10.15. Oblain the solution of §

Py @>0y>0
oy

such that u{z,0) = o, #(0, y) = o
+ See Watson, § 3.6. 4 Batemsn, Partiol Differential Equations, - 125.

o
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-1 ¢ .
Tet U, y) = —_—__ j w{z, 1)etés dy
(.9 \/(2#)0 =, ¥)
for y > ¢. Then
W1 fau,

1 8u g_f:f:-’l’ @ I F 82% { .
=, 2 S | 2% it g :
J(Qr)[ﬁy 74 L 15\/(2#)! oty " O\

_ U : Oy
i’ | O

since (with sufficient continuity) % (0, 4} = 0. I{Qn&;
Uy) = a@et, O

" Making y->0,
_ _ o RN
1 , {2 )
Ay = —_ ae*gx,’v_:—.—'-——.
ol _J(QWJJ._ ‘M i@
: : \ .f?él{-m
. R iyl ol
ence @;(a:, y) " o f 7 di
‘.:'. ik—w
L <“ = al{2/(zy))
by (7.13.9). ®)

10.16. Diffetential-difference equations.t We shall illustrate
the generalin%eﬁhod of solution by considering the simple special case

/. P . A (10.16.1)
N %) = g ifleth)—flz—h)}. Y

V& shall firs assume that f(2) = O(e"7l) for some positive 6. It
. follows by repeated appeal to the equation that f(x) has derivatives
N\ E.)f all orders, each of which is O(ev?); and if f(x) satisfies the equation,
s0 does f*(x) = f(x)—f(0)—z£'(0), and f*(0) — f+'(0) — 0. Hence we

may suppose without, loss of generality that f(0) = f(0) = .
Define F,(w), F ~(w) as-usual, forv > ¢, v < —¢ respectively. Then

1.
. :

T Hilb (2), Titchmarsh {16), -
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a8 |w] — oo; and similarly for F_{w). Hence (1.,3.4) and the formula
obtained from it by differentiating under the integral sign are both
valid; and (10.16.1) gives

Atk

; ._e-mw ethw i

| (--—m 2;;'__) F (w)e w4, =
where ... indicates the corresponding term with & and F._ instead
of o and F;,. Hence, by Theorem 141,

ink y
sl )F+(w) —xt, (- WP (w) = —xfw). -

where x(w} is regular for b < » < @, and x(w) - 0asu > o0, ’Heﬁce

N

24w
__h 'X(’w)e_im {w)e"‘n 1
f(x)__;@;_ f aﬁhw_hw J(%ﬂ) f smhw-kwd

it — o

This is the sum of the residues at poles in the strip ) < v < a. There
- is a triple pole at the origin, giving a qua,drap.lp)n z. The other zeros
of the denominator give exponential terms. Hence

f@) = A+ Bt 0a:2+ 2 0, -t (10.16.2}

where 4, B, €', C\, are constants, and i, runs through zeros of sin haw—hw
other tkan 0 such that T(w,)] < e
If we do not assume that f @) = 0(3”’*’4), we can proceed as follows.
\

Let | mrw) N )ff( Jeter dz.

Then \ )

f f(er\?z)E“’xdx j flzjeise—? da

a+k

‘.\w = e~k (2r | F, g(w)+Fy gsn(0)— —F o)),
afd similarly with —h. Also

g .

J [ (x)etoe dg = f(ﬁ)e“-“’ﬁ—f(a}eiwaﬂin{%)Fu,ﬁ(w).
On multiplying (10.16.1) by ¢* and integrating over (a,
obtain

B), we thus

J(@rih—(sin hw—hw)F, glw) = @, (w)—@glw),
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where
0uw) = feeivn VO iotnf, o) —onF,

and similarly for (I)ﬂ(w) Now

a4 o

oy =L [ Femdn @<z <p
i |

for any real a. Choose ¢ so that no zero of sinhw—hw has the
imaginary part @, e.g. take a positive and suﬂiciently sma,ll Then

o i
. k (I)m(w)emiwx q_) ﬁ(w)’e.(m@
J@) = 2—17_13' sin kw——-kw Em, f sm kw——hw d.

1t is easily verified that for a fixed g, a.nd !@ﬂ) =y >0,
 Dy(w) = OB
Also we can choose a sequence of oontouiﬂ e.g. the squares , with
vertices at 2nwh-1(+14-1), on which }s‘inhwmhw| > C'lw|. The usnal

process of contour integration then gives
dg+oo

dJﬁ(w)e*‘m A\ Dg(w, et
2m J. smhwh—kw "'_ZcbsT (< B—h),

where w, runs through{he zeros of sin 2w— hw in the upper half-plane.
The coeﬂiclents\ thls series are. mdependent of g, since
o@g(w,)
T L R T
28 NO 2k
»\\ ' -' +8‘wv-8(t‘w —[——-e-f’m’v 226”“"‘») =40
Slmi}a'}ly the term involving ®, gives a series depending on the zeros
of8in Zw—hw in the lower half-plane, convergent for z > a+#,
tOgether with a quadratic in z arising from the triple zero at w = 0.
The result is that (10.16.2) again holds, w, now running through all

zeros of sin hw-—huw except w = 0, and the series converging uniformly
in any finite interval.

~ 10.17, The equationt
®—1
J@)+ S 8, e+b) = g(a)

1 For another method see Schrmidt (1),
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can be treated in a similar way. Consider the case in which each
funetion is O{e?®). By putting
. =}
(i) = fla)—f0)—...— —_ fm-)
£4(8) = S0~ 10) = £ (0
we can reduce it to a similar problem in which
FO) =F1{0) = ... = fr-D(g) = ;

and repeated partial integration then shows that w"F, (w) belongs to
L*(ig—o0,da-+w0) if @ > ¢, and similarly for #_(w). It follows as in
the previous section that

g4 »
[ oK) -0, o)) e di ... =, \
- fa—co : P \‘ N
n-1 " -
where K(w) = (—iw)*+ 3 a,{—iwpe-ibwe, O
P

and the integrals are mean-sguare integrals. Hence, by, fI‘fhé’c‘irem 141,
F(w)E(w)— G, (w) = x(w),  F_(@)Kw)~G )= —xw)
where y(w) is regular for b < v <L a. Hence
O
N

1 e ) xiw)
o= | b

o\ it
AT L) x()
h etz dy,
T, _f )
where ¢ and b can be chosen“so’ﬁhat all the zeros of K(w) in

" imt\_"c “g o “-<~\ ¢, I

but no others, lie in B v < a. The terms involving x{w) can be
caleulated by the tHedrem of residues. The result is

-+]

1 ia,—NaG ( ) 1 ‘ﬁH—mG ( }

_ Ve \ + W iew o GAW} o imw g

o= "@*’f MR ORI (R
O\ P + z c g—tawy,

W}-'}ﬁre"éb’,'.'runs through the zeros of K{w) in the strip —¢ < v < ¢,
afid €, is a constant for simple zeros, a linear function of x for double
zeros, and 50 on. -

We have used L? theory in the proof, but there ig no difficulty in
avoiding it, e.g. by first integrating twice, 80 that all the integrals
dealt with are absolutely convergent. : .

The problem can also be solved by the method of the last section
in the case in which the functions are not O(e™).
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_' 10.18. Difference equations. A pure difference equation can be
solved in the same way. Take, for example,

FE+1)—f() = g(x)
with the usual assumptions about fand g. 'This is equivalent to-

ia+w

| (B wyetesmo B )e-tmo_ @ ()e-im) qup 4
fa-ow ih 40 ] )
+ | {Flwletetor B (w)e-izo_@_()oic) gy — o,
: ib—oo ’ .
. O\
Hence Fyw)e—1)— G (0) = x(w), ,
F_(w)e™—1)— G _(w) = —x(w), PR D
where y(w) is regular for & <= » < g. Hence « W
ia+w N
oy — 1 xXW+G () D
fx) ‘/—-—(211_). f e dw m\
UWE— 3
i3 o -
14_:\ X{w)‘_iﬁ_ﬂ) g~ o o

.__’7(?%\)1;_& e—w__ 1
The terms involving y(w) merely yopresent a function of period 1,
which is obviously part of the'Solution. Hence the solution is

a4
—_ - 1 NG(w)
f@) = @) "Lml;'f ¢ dw +
' \\ - ; e &)
) e it
O tam | Sapeae
- :

‘where f*(z) ia\ ai;ny funetion of period 1.
" The f&ijmulae are valid in the L2 sense if g(x)e-¢k! belongs to L? for
'sgn;q%“"Under more special circumstances we can reduce it to
other forms.. If we expand 1/{e="—1) in powers of e~i, we obtain
~femally 7@) = @) —ge)—glw+ 1)~ ..,
which is obviously a solution if the series converges.



XI
INTEGRAL EQUATIONS

11.1. Introdu_ction. Tre most familiar form of integral equation is
y
Fe) = o) HA | Rz y)te) .

where g(x) and k(z, y) are given functions, and f(z) is to be deter-
mined. : )
"The equation can be golved by means of Fourier integrals in certain \
special cases; these ave, roughly, the cases in which k(z, %) is of sucha
form that the integral is & ‘resultant’ of one kind or another(") ’
~We shall usually suppross the factor A, which is of no j.rﬁpdrtanoa
in most of our results. . _ : ’
Virst take k(z,y) = klz—y) and the limits -—oe]";}), so that the
equation is -

<0

R
f) = g+ | M=) dy (< x <o) (111D

A formal solution may be obtained 28 follows. With our standard

notation for transforms, we have (™

F) = T dw{\gtxiﬁr _j - y)flg) Ay}t da

Y - o

", 1 F) of i
G [ 1w [ Ho—ypeende
ON d -

:“\l.

‘\...::_—. : _i__ r d 3 L{Dew o di
= o e i @) yi (e

\”‘\ L = G Jem FE. (11.1.2)
Hence Flu) = '117/%%?@_)’ (11.1.3)

and the solution may be written

_ ) Ry ) 11.1.4)
ﬂx}';ﬁzﬂj g
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Also, (11.1.4) gives
. — = 1 G(u) o — —ixy
o) = o l (oo — O

4 o

K (%) —izu
= [ 60—

and m(z) is the transform of M(u), this gives O\

f@) = g@)+ [ gomea—na (D

—tn N/

as another formal solution. N
The equation ?

o .\\
i) = glo)+ f f{y)k@ %” AL

may be reduced to the form (11.1.1),‘Q};§olved similarly by Mellin

integrals. The formal process is \

3s) = Gla)+ f xs«ldxf rn(?) %

8% [0t i e

N
,.\"'}"=“ B(s)+ f Syt dy j E(u)us—1 du
O d ;
OF =6+ EERGe),
and !gh&‘{alution is oo
”\:»\;.;. flz) = 2iz I_(E‘(;%g_}x_s ds. _(11_1_7)

/ c—im
This can also be reduced to a form corresponding to (11.1.5).

The simplest conditions under which the process is valid are
given by _ ' :

THEOREM 145. Let g(z) belong to L*(—a0,00), and k{z) to L(—-cxn,?o),
and let the upper bound of K(u) be less than 1/\/(2n). Then (11.1.4) gives
@ soltution of the equation of the class L2, and any other solution of L* 18
equal to it almost everywhere,
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Clearly G(u){{1—4/(2n)K(u)} belongs to L2, so that (11.1.4) exists
in the L? sense, and defines a function f(z) of L?; agin§ 3.13

Bz} = f k@—y)f) dy

exists for almost all z, and belongs to £2; and, by Theorem 65, if
F, H, X are tbe transforms of f, %, £,

— o JEmGu)Kiu)
He) = Jem) Flu)K(w) == {5 5 o0
Hence the transform of g{z}--k{z) is ~
VEMEWE® _ 6w |
TS ek = iJenk@ = T (O
Hence g(z)+-hiz) = f(z) A

7 ™
< 3

almost everywhere, i.e, the equation is satisfied. ~
Conversely, if f and g ave L2, k is L, and (11.1.1)}tdlds, then by
Theorem 65 (11.1.2) holds, and hence (11.1.4J5\This proves the

theorem. A
Halso kis L2 so are K and M, and (11.1 5§\1s equivalent to (11.1.4),

11.2. The homogeneous equatlon.. We have shown that, so
far as the class L? goes, the solutlon %8 unigne, But under special
circumstances there may be othem solutions not of L2, If there were,
two solutions of (11.1.1), their'difference would satisfy the homo-

geneous equation ...\
fa) = ﬁmiwﬂw y (~o<z<w). (12D

This equation ig sa?tlsﬁed formally by putting f(x)} = €%, if @ is such
x%# f(mm&:l (11.2.2)

We shall ‘next show that, under fairly simple conditions, the only
sofutjons of the homogeneous equation are of this type.

THEOREM 146. Let 0 << ¢ << ¢’, and let &7k(z) bdﬂﬂg to L and
e=21f(z) to L¥(~c0,00). Then, if f(z) satisfies (11.2.1), it is of the form

fle) =2 }f C, @ te e, (11.2.3)

where w, runs through all the zeros of 1—(2m)K (w) such that Hw,)| <
the C, , are constants, and g is the order of multiplicity of the zero w,.
4352 x
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- It is at once verified that (11.2.3) is a solution of (11.2.1),

To prove the theorem we ohserve that, with the usual notation,
K(w) is analytic for —¢' < » < ¢, F,(w) is analytic for » ~ ¢, and
F_(w) analytic for v < —¢. For¢ < @ < ¢' o

ia+m
]' —gx — .
\/(2—??) f F (w)e dw = flz) (2 > 0), 0 {z<0)
- in the mean-square sense; and by Theorem 65
@ ia+ o Q)
| Me—w)fwrdy = [ )R (w)een aw, \
1] ia-—a \".

'\ L
also in the mean-square sense. Similarly for F_{w), with a replaced
by b, where —¢’ < b << —¢. Hence (11.2.1) givesy, 3

fatw 'mj\\
P (w)1—J(2m) K (w)}e— 2 day J- '
b+ ,‘..\\: '

+ f P —y@mE@)e-ido dw =0
i — o0 £ ) )

i

Ty — oo

in the mean-square sense. XN

It therefore follows from Thorem 141 that F(10){1—J(2m) K (w}}
and F_(w){1—/(2=)K (w)} cantboth be continued throughout the strip
b <v<a, and F (w) = >F_(w) in this strip. Hence F, (w) and
- F_(w) are regular in the strip except possibly for poles at the zeros
of 1— J(2mE (w)..
We can now'w.r:ite
A

in4m 4w
INY . 1
f{a‘,‘ .t AR f _F_}_(w)e-—axw dw — T~ . f F_}_(T,{JJE_ixw daw,.
3 . 3 2
% ;\k ‘\/{ ﬂ)?’-a-—— o . '\X(&T)ib —

andy. Since 7, (u) -0 as u - =+00, we can evaluate the right-hand
\‘Side’by the caleulus of residues in the nsual way, This proves the

) 4

heorem,

In particular, the result is trae if k(x) = O(e~W) and f(z) = O(e"*),
where 0 < ¢ < ¢/. In this ease it can be obtained without recourse
to L7 theory. For, if ¢ < ¢ « 1,

fa4 T ' o
lim g"'(iv) dw = lim 1 _d% J. f(x)ei:m; da
w-—_
i

. T‘""‘Dm_r w‘__g T—rm‘/(%m_i’
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1 @1

= x} doe im

'\/{217) ! f( ) Ty

= ey | et do

ig+T

f gj—_u%dw

ig—T

by dominated convergence; and similarly

i@+

T . ] o twt T
m | ) gy = L [ e o [ ) dytim |
[F -0 =T

piw{z+y)

T—»wm— w—C ?_'C_
=i | flz)dw { & Jeilt ) g O\
!f _ _fx {y)e y 2
i Teta | pop—a) de. o0
Jora[rapeni (@
- Hence »
ias RN
P (w){1—y(2m) K(w)} K70\
f e SR 0
| — e [f@’;fidi‘f(;)ﬂ [ k) flx}.
Similarly & ’
[ ] ) »< m [4]
J‘ F_(W){l;ﬁzw}K(i)\}:@\” — —J@mi j oilt d-t;.[ fla)k(i—w) dw.

b0 N\ 0
Hence the sum of th ~erms on the left is zero, the result of Theorem

v/

141 again holdsyand the theorem follows as before.t
~ &/
11.3. E{;\\&mples. (@) Let
Y = e, ey =2 (2 <0 0 (@ > 0).

Then\. .
3 ) = 1 gzl +izn dp = J(E) ___1__.,
NED ) 144

1]

A wugy = AL

+ A solution under difforent conditions is given by Bochner (2).
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The L? solution is therefore

< e—m:u
J@y = f (I—s2){I—A+ z\—{-m)
Suppose, for example, that 0 <~ XA << 1. Then

-f(:r;)zz—_z_)le—z @ > 0), =2%-):e(1“)‘)$ @ < 0),

This is plainly a solution, and so the only L2 solution. There are

similar solutions for other values of A. N\
The equation is " A
fla) = e~12L ez j e~¥f(y) dy, AN

and is reducible to differential equations. Let A ™

el

mf\"
$o) = [ ey, ¢@) < L&),

&

Then, for z > 0, —¢'(z) = e—nf@(b\)f
50 that Plx) =

For & < 0, —qs'(xa“ﬁ 14 M),
so that ¢(x) | —1+ Cre

Since ¢(z) is contml{ms at x= 0, = —[- — + 5" Hence

o) = — L6 OAD (> 0)
x \

..s\“ | =(2—_';;+C7‘)6(“5‘*’3 (@ < 0).

Thegomplete solution therefore contains a term with an arbitrary
(tenstant; and in fact flz) = et-ds

\

is a solution of the homogeneous equation
f@) =2 [ ety ay, (11:8.2)

cotresponding to the zero w = §(1--)) of the function
' A

1—J2mK(w) = 1— Triw
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{ii) Lett k(%) = Ae~* (A < ). Then

=0t o= [0

mz} = J _..A_mg—'xwu —2h)

and, if g(z) is L3 the L? solution is

fl@) = glz)+ -N,—(lgh-) _ f gltje-1-ovi-N gy

' 14202 2X A o
Al 1—.JemKiw) = -T2 74" O\
» e K () 1w 7 N -
so that Ae0-2N 4 Bo—2it-24) «

&

is a solution of the homogeneous equation if A > 0. ,\"

(iii} Consider the homogeneous equation in Whioh T(x) = e-iv.

(iv) Lethﬁ—k()— i ()~--v4\Then

lo}\iz
K = ~/ ('Z%T)emml’ G».("P) = isgny me,

and the sclation is
1 tmegnue ¥l
f) = 7os f %g_e_,—ul e~iav du

. ;C, )J' smxud — J(g,,)( cobhmw%).

This just fa{"\tvo come under the above conditions, and in fact f(z) is
not L%, K O

(v) et} h{w) = M(1+) iv (11.1.6). Then R(s) = hn cosecar, and
ﬂm{%futlon is et

66)  pegy
o) =55 f Thmcosecsn
e A
o = 0+ g [ i O
e—im

¥ Picard (1). : 1 A.C. Dixon (1}
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- If dar = sinam, where 0 << a < 4, we have ' '
) +ian
1 ’ __sinom g, - tenamust—ulie
2mi sin s —sin aw '.'r 1—u?
e—iwn
and, by Parseval’s formula, the solution may be written
tan o afy)-1-o—(afy)
) = glayta B0 ”f gty S gy
(n) The homogenecus equa,tlon ~
fle) = f ® 4 LN (11.3.3)

+?J N\
is reduced by the substitutions A\
z=¢, y=e, difie) =<3{>{§)’

@0

' _ $(n)
to (&) = 2 f oo {5 7

The only solutions of this of the fm:m ?(5) = O(e?), 0 < ¢ < , are
‘exponentials. We have

»,’

_ A8y . Mm
_ k(‘f) 2 ,*};}S&s’v Klw) = 2 cogh mw’
. A
| t_l_-nd lud(%)K(w) = 1__déh

This has an mﬁmﬁx\of zeros, some of which may lie in —% << v <
and give solutiéns. For example, if A = 1 /=, there is a double zero

ﬁtw:o,ms

A MO =dAdBe
is the ‘sQlJntlon ie. flx) = A—]ﬂ)gm

is ﬁhe solution of (11 3.3).

“\I‘hat there are in fact no other solutions of any kind is proved by
Hardy and Titchmarsh (3).

. {vii} The homogeneous equatlon

#f(w) *'P( ,j @y urdy O <x<l) (139

- is reduced by the substltutlon
=, y=el,  edf(ed) = $(6)
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¢
otheform  HO =y | GV

Hee M@= @D €20, 0 €<0,

) A d—iw—a)
11.4. Various forms. Various other forms of equation are
reducible to that just considered.
For example, considerf "

1 A
o) = gyt [ LH) o dy atyy)

b y oY’

Putting & = B—E, Yy = e M, and. wrj_ti_ng £ N

et O, s = O, A,
we obtain H(E) = P&+ j cle—m)d(rLdy (11.4.2)
g ¢

{v > —(1—a)}.

"This is of the standard form if k(&) = Ofor:\f > 0.
Another related form is I

o) = [ K\ ) - (11.43)
x L "ﬁ[\' E::)

I filx) = f fit) dt, and 1s an integral,
[i] \‘~"

o &

| f“.@ff(’y) dy = KA [ (&) 00 v

0

1.,
and if k(k}:é’}) the equation is
’\ o &
\ _ o) 1,}_%'(3) dy.
he =iyt .]J. Gy z \x fily) ey

e\ ¥,
th'is is of the same form as (11.4.1).
ther equation of

11.5. The equation with finite limits. Ano
some interest is obtained by putting f(z} = 0 glx) = 0, k(z} = 0
for # < 0, in (11.1.1). We ohtain the equation

flx) = glx}+ fk(x——y)f(y) dy (z >0 (11.5.1)

% Browne {1).
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considered by Doetscht and Fock.] Theorem 145 of course still
applies; but now there is a more general solation of the same type.

THEOREM 147. Let g(x)e—~* belong to LX0,00), and E(z)ese 4
L{0,00), for some positive ¢. Then there is Just one solution f(z) of
{11.5.1) such that f(x)e~= belongs fo L2(0,00) for some positive ¢'; it i
given by fa+h

1 .

)= —-—lim. — — eI 11.5.2

fiz) J(27) A e ) l—\/(27r)K(’w) ( )
ke R \
f @ is sufficiently large. .

The equation (11.5.1) is unchanged if we replace f(x),g'f(}:’)? and k(x)
by flx)e-<, g(z)e~2*, and k(zx)e—o= respectively, and We'may argue in
terms of these functions; or, what comes to the sa@né?’thing, We may
apply the argument of §11.1 to K(u-+ia), eted instead of to K{u).
We have \%

o0

1 ) 1
Kutia)] < — — | |k(z)jedede < -~
K] < 75 f el e < o
if o is sufficiently large. The solutibn’then proceeds as before.
The solution (11.5.2) may alsg'be written
an

B R K{w) iz gy (11.5.3
flz) = g(&f)-i—l.l.%, EL G(w) 'lj\/{zme w. | _)
Suppose that k(x)e—\'@ is also L% Then K (w) is L2, and hence so is
O —_ K 11.5.4)
2\ M (w) = 1—J@mK(w)’ (
'\“ 1 iatA
and \\"‘ me) = - syt :[‘ M)t d,

S Mil;ing @ >0, it is seen that m{z) = 0 for < 0. The solution
' \chfl therefore be put in the form

J@) = 9@+ [glymiz—y) dy. (11.5.5)
. Q
The relation (11.5.4) is equivalent to

mix) = k{x)-- fk(t)m(x—t) dt; ' (11.5.3) |

t Doetsch (1), (2). i Fock (1),
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in fact it is at once verified that (11.5.5) is a solution of (11.5.1) if
(11.5.6) holds and the inversions are justified.
{11.5.4) also gives

Mw) = ﬁ (2 )it K (w)}®,
a=1
and this is equivalent to

mix) = Elk"‘)(w),

where  kO(@) = k(z), M) = fk(a)km—n(sc-t) dt.

"This is the well-known Volterra form of the solution.} A

11 has been proved? by Wiener that, if k(z) is L{0,0), & necc;s{a}y
and sufficient condition that (11.5.6) should have a solution\hl¥) of
L{0,e0) is that 1—4(2m)EK(u) # 0 for 1 real. This is bound up with
Wiener’s Tauberian theory, which we do not discuss he‘re‘

Examrres. (i) Let k(@) = xet {x > 0), 0 {x <QL Then
N

I PR SN
miz) = AR
Hence the solution of R )
fia) = gla)en [ o) dy
“\ o :
P \s,.' T
is () -;\g(x)—t-?\ j drdiz—vgly} dy.
£ ”.x N/ 0

&

If ¢z} = j "{s—\g'(y) dy, the equation reducés to the differential
e“““ﬁ"“&\\ & () — M) = eg(@)-
Thiﬁxéﬁ% for f(x) the above solution, together with Aet+=; but
A0, since all the other terms vanish for & < 0.
(ii) Let|| k{x) be a finite sur of exponentials,
k{z) = Pe**+ Qer+... (&> 0).

1 P Q

{ See Goursat’s Cours & analyse, 3 3, § 548-9.

1 Paley and Wiener, Fourier Transforms, § 18- I BT Whittakor {1)-
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| Hence M (w) is a rational function, and may be written

(p+zw)(g+zw)
MO = (e i) K0,
where i, iB,... are the zeros of 1—\/(277)1{ (w). The calculus of residues .

then gives
on giv m(m} — e P*‘Gﬂ)(&'—"fx)

(B—a)(y—a)...
since /(2m) K (ia) = 1.
A similar expression may be obtained for the solution if #(z) is o
polynomial, A
(iif) Lett g(x) = k(x) = M,(z). Then A\

(N

ACN 1

G(ﬂ?) K(w} == 3 ;(27?) ,‘/{1—*1{,‘2)

Ji@n )fJ(:r)emdx—

and the solutlon is

A g+ a+iom 3
e—tzw A o{\

= f \/(1 e A 2@:3;.%%@7_;533 (e > 0)

n a7 (14825 "
= 5mi f We‘”‘“

fz) =

&—{n 2

a%ica atin
e.?.'s
?\f i ,\2+“°'“d3+2; f L™
A » \\ r:.-;:x: ( ) d—t
= = Ag,j Sy 1=y 20 g
'\w “FAcos{J(1— Az)x}+— ——sin{,/(1—A* )’-’3}:

. (1—A%)
by {7 mﬁ), (7.18.3), and (7.13.8), v

ait. 6. Another type. Another integral eqllﬂ,tlon which can be
\gc?lved formally by means of Fourier mtegra,ls is '

-g(a:)= f be—y)f) dy, (11.6.1)

- This gives formd]ly
17 ;o

G’ o— - L __ d?

() «2?)‘_{: e dxﬁf Ha—o)ft) dy

"t Fock (1),
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v f <
= J@) Jf(y) dy j k{z—y)ei dx

==}

= J(I?ﬂ_m) f fa) dy J F(t)eit+we gt

= J@m) F(u)K(u). {11.6.2)
Hence the solution is
1 F e, A
flz) = 5 ma * dy, (11.1?.3?
- AN
For this to be an actual golution K(u) has to satisfy speqiai}:onﬂi-
tions. N

TanoreM 148, Let g(x) belong to L3(—o0,00), and k{d\)‘to L{~o0,00}.
Then, in order that there should be a solution fx)ef L3 —o0,00), it 18
necessary. and sufficient that G(v) [ K () should belong to L —0,0).

Suppose that g, k, and f belong to the given L-classes, and (11.8.1)
holds. Then (11.6.2) holds. by Theorern’ 65, p. 90, and F is I2.
Hence G/K is L2 o

Conversely, if G{K is L?, then': defined by (11.6.3), 13 L2, and,
by Theorem 65, the transforni-of the right-hand side of (11.6.1) ia

A 1 Glu)
A QKW)U-@;) R(T&) = G(u).
Hence (11.6.1) ]mlda
A similar ?%@iﬁ}n soluble in terms of Mellin transforms is

w

O
N o) = [ W)y (11.6.4)
™S 0
‘Thig gives formally
v 66) = | -t da | e
0 0

[ g dy [ ey o
] H

= ff(y)y" dy fk(u)”’“‘ du
, ]

= F1—8)R():
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: _ B{1—a)
Hence ¥(s) = 3'{(_1_45’
and the solution is otios
. ' _ 1 (_5.(1*.8) —& \
e—iw

11.7. Laplace’s integral equation. This js

0

== =Y dy. 11.7,
9(w) f fgle==v dy (11.7.1)
A formal solution 1iim A
O
fay = L =9 wgs A (11.7.2)
271 P(I—S) g N

}—ie . |
is given by (11.6.5). The equation can, howeve,t',f\'be solved directly
by Fourier’s integral formula. This gives “’\

9lia) = [ fly)e~tey-dy]
0 ¢ x\ v

and hence fla) = —;; f g(igleixy dy (x> 0), (11.7.3)
the right-hand side being zeforfor 2 < 0,

If g{x) is given originally. for real z, the solution (11.7.3) involves
an appeal to analytic/entinuation. The solntion (11.7.2), with the
usual definition of*®; only involves explicitly g(x) for real z; but
it contains the faetor 1 fI'{1—s), which is exponentially large at
infinity, and itséems difficult to justify it except by an argument
involving afialytic continuation. In fact the equation (11.7.1) can
only beséa‘sﬁed if g(x) has the values assumed on the real axis by an
analytie function g(2} regular for 2 ~ 0, s0 that some reference to
tho-analytic character of g{x) is almost inevitable.

" \We ghall prove that g necessary and sufficient condition that (11.7.2)
\8&«0@&% exist in the mean-square sense, and define a solution of {11.7.1)
belonging to L2(0,c0), is that g(x) should have the values assumed on
the real axis by an analytic function g(z), regular for largz| < im, and
such that o :

. f lglre?®) 2 dr <« K (11.7.4)

0
Jor —iz < 9 < in.

Suppose first that f(z) satisfies the equation and belongs to L3(0,00).
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Plainly g(z} is regular for B{z) >0, ie. |argz) < 3. Now by
Theorem 99, p. 131, we can write
Jl) = foy(w)Hiolw),

where fi,(w) is regular for argw > 0, f_{w) for argw << 0. Then if
el < 0 << Ay

glre®) = [ e"f o fu) du + | e o) du.
1] 0

In the first integral we can turn the line of integration through an
angle {m-—@, and in the second through —r—8. We obtain ., /A
o) = eimD [ e, (peiGn-0) dp f-e-itesd [ gvof (pe-tichdy dp,
7"\
0 0 N

and since f,) and f_, belong to L* along every line_ atgho = const,
{11.7.4) follows. \\

Conversely, suppose that g(z) satisfies the above condition. We
have

3

o AN/
G2
®H(1-—8) = | glz)z-de
| J O
If ¢ > 0, we rotate the line of integration through —4, giving,

Gl —s) = —1 J‘g(;‘éy)(ye“’"")‘“ dy
'__r-mtléeirﬂioguiﬂf J g(—iy)y--" dy.
& s
For ¢ = % this is % multiplied by a function of L*0,o0); & similar
argument witihd& 0 and a rotation through r shows that &(1—s)
is e~dmil mu}g@}lﬁéd by a fimetion of L¥—00,00). Also
Q T (1—8)] = Ofel™®).
Henca bhe integral in (11.7.2) exists in the mean-square sense. That
the(fx) so defined satisfies the equation follows from Theorem 72.
\Alternat,ive forms of solution have been given by Widder (1),
Paley and Wicner, § 13. '

11.8. Stieltjes’s integral equation. If we iterate the previous

equation, i.e. put

o) = [ v dy, b = [ o d
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we obtain formally

hiz) = fe—xy dy j?f(u)e-w du
Q

0
= fj flu) du f e+ gy
L]

L]
[ S '
= | S 11.8,
_ J 2 da, (11.8.1)
: ¢ O\
another integral equation of a similar type. This equation hds been

- considered in connexion with Stieltjes’s moment problem:}
Putting 2 = ¢f, y = en, ebéh(ef) = $(€), e¥f(ef) = ${£), the equation

becomes - NN
= ¢ (O 11.8.9
o= | i i -
This is of the form (11.6.1), with 7\
k) = dsechdé, K (;a}%‘;/{%w)sech ,
and the formal solution is O
= 1 ao'”.::: : —ifu
‘ﬁf? )= ﬂ_@;—) f‘f" {u)cosh wu e—¢% dyy
- lx\f _\F(?;)(e-iféﬂ:wm_f_e—i{g—irr)u) du
\‘: Et—r{g&(§+e:n)+¢($—iw)}, (11.8.8)
:”\:§.. i"
oF AN f@) = o {h(en)—h{ze~im)} (11.8.4)

_ ”\A“h 'a:ppeal to analytic continuation is again obviously involved.
\_We shall show that a necessary and sufficient condition that (11.8.3)
should define a solution of (11.8.2) belonging to L¥—co,m0) is that
(2} should be an analytic Junction, vegular for —m < y < m, and that
| Wetinpdy < &
. for —m <y < 7.

T Seo Hardy (7), Paley and Wiener, § 14,
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As in § 5.4, the condition implies that there are limit-functions
i) and i(z—iw) belonging to L¥—cw,w}.

Tf ¢ is L2 and ¢ is defined by (11.8.2), then ¢(z) is plainly analytic
for —7 < y < =; and by Theorem 64,

E!J(Z) = ‘\/(]g'ﬂ.) J —E(E},_ p-izu d’!{,,

cosh

—ar

where @ is the transform of ¢. Hence

o

[ s e, % = @_(li);‘ﬁ ]
f i) [2 dy = = j O s g \
] - 2 A\AN

'\

N

8

2 éfs{;:)_}f_ 2l dag, o~

=W Y
_—

Hence the condition is necessary.
Conversely, if  is of the given form, then N

£

7 0\ ?
S

Ty — 1 ; ‘:'\1: ‘s

e**M‘Jﬁﬁifﬁﬁmf“

belong to L2(0,00) and Lt(—co, 0).fespectively. Hence W (u)cosh ma

belongs to L3(--o0,00), and (1 1.813) defines a function ¢ of L% That
it is a solution of (11.8.2) follows from Theorem 64.

In terms of the original functions, a necessary and sufficient condi-

tion for (11.8.1) to hay:a\ésolution of I? is that g(z) = g{re’®) should

be analytic for —msl < 7, and that
MY

~0 [ lgtretyp ar
should bé;bounded for —m < 8 < =

Thaty11.8.4)is a solution of the original problem is easily verified,
fortie right-hand side of (11.8.1) is then

i [y, 4 (Mg,
_ 2770 -+ 2 2 _x-{—u

Rotating the line of integration of the second integral t}{roygh 2m,
and allowing for the residue at — gei7, we see that this is equal
to h(z). '
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11.9. Stieltjes’s moment problem.t A note on Stieltjes’s
moment problem itself may be inserted here. The problem is tp
determine f(x) such that

f:r“j'{x) de=c¢, (m=10,1,.),

it

where ¢, ¢,,... are given.

Suppose that f(x)ek'= i3 L{0,0) for some positive k. Let
( ]_} Cy SZH, (_1 ?Lx?lé?n N D
4s) = z f f@) Z mr L0

= J f@)cossvr dae = 2 j sf(fﬂjcog af A£.
0 N\

The inversion is justified by the convergem{, of

) f [f(z)] i Egﬂ)-!— X e f}(m)oosh 8|~ d,

provided that |s] <« k. The ﬁpal integral, however, converges if
8 = o-tit, —k <t < k. Hence ¢(s) is an analytic function, regular
in this strip, and ¢(s) -+ 0\as o —> -Loo in the strip. Also

\

Ef(‘f@j .—hmf(l—-)q_‘;(s coss&ds

for almost all § Hence f(z) is unique apart from sets of zero measure.
To show that this is actually a solution, we have, if ¢ > 0,
’ ia+uu

e“wf (—1)m+tgzm
"§ 2m f 52'““1 = (2n)! {£>0), 0 (£<<0).

\Hence
[y e ~ 2 [ e ag
[i] il

ia+ o
(—1)m+12p]
= L f 1) e f g

—m fx—

T See Hardy {7).
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(—1yoiznt F

7t

i j Elf(ee-s g

fn—w

- (;1)‘"’”2%! qS(s}
7 e — s2n+1
fm— a0

The inversion is justified by absolute convergence if n > 0, and by
the bounded convergence of the s-integral if n = 0; in the latter case

fat+A
the final integral is hm J . The result is, of course, a case of Par-
pe) ia—A |
geval's formula. A o
Now ' \ N
i flotio) 4 _ [ $l=oti®) g S ia)
(a+1a)2n+1 ( g -[—’.l,ﬂﬁ)?‘“*‘l L’-‘_\,m}znﬂ
since ¢ is even. Hence W ‘
fer+ iatw —datm o
1) g _ ¢b) _(=1yre,
o gan+l 21."; ) 321\ +1 ol
ia—= g — 0 —'{ﬂ’*

by the theorem of residues. The d.esared result therefore follows.

The method, of course, does not show whether a particular set of

¢,, correspond to a function f{m} of the class considered. For example,

45’(3) = cos &, which is not the transform of

if ¢, = 1 for every =, thﬁ
a function mtegrable. e ordinary sense. Tt is here that Stieltjes

integrals become reievant
Ife, =1 (nvkl)‘, hen
'S X 96(3) = 25~ gin s4-coss—1),

e/

and K N\

Y =1 (3*”3“—3#15%5'—83) cosaf ds
N\ 1T 8 L
N b

—¢ 0<é<l), O ¢>1)

B F(n-l—l) (ﬂ-l-l)ﬁ
~u 2

Since
j’ gre—vroosx gin (e sin o) 4%
ifp>0and 0 < o << 3 the function

) = e-sreow sinfosin )

4882
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satisfies f wfx)de =0 (n=01,.)

0
for every value of p less than 1. The solution is therefore not unique
if we merely assume that f(z) = O(e**"), where u < }

' 11.10. Finite limits. The equation

9@) = | be—y)fly) dy (x> 0) (11.10.1)
L] ”
is, formally, the particular case of (11.8, 1) in which f{x) and k(a:)
and so also g(x), vanish for x << 0. The formal process 0f §11\6 gives
N\
as before G(w) = f(2m) F(w)K (w), A (11.10.2)

T
L

and the formal solution is N
g+ \\

fla) = 5 f (’(w) oz dw (11.10.3)

As before, for this to be a solutlon, sp\ml conditions on K{(w) or
special relations between G/(w) a,nd K(w) are required.

THEOREM 149. Let glz)e—o, 5elong to L¥0,00), and L(x}e““ o
L{0,20). Then, in order that there should be a solution f(z) such that
J(x)e—= belongs to L¥0, oo), 3t 55 necessary and suﬁcwnt that

oFeeigre

where M s a cmttmt tndependent of v, for all v >

We can er)uce J@), g(x), and k(z) in (11.10.1) by e—axf(:c} e-2%g(w)

and e—“”%x} respectively, and the result follows from Theorems 148
and 95} '

4 .\'" 3 ) .
\m That the solution of (11.10.1), if it exists, is unique, can be proved
more generally,

TreoreM 150. Let f(z)e—* and k(x)e— belong to L(0, o) for some
pomtwe c, and let -

u < M,

ey =0 @>o0.

Then at least one of & and £ 18 null,
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For (11.10.2} holds, the inversion in the proof being justified by
absolute convergence; and now &{w) = 6. Hence either F(w) or K{w)
is 0 for all w, and the corresponding f or k is null, by Theorem 14.

We shall next show that the same result holds without any restric-
tion on the behaviour of the funetions at infinity.t We use the
following lemmas.

LeMMA o Let $(w) be reqular in the upper half-plane,
$lw) = O™, g} <1 (w=utw),
and let p(iv) be real. If € = 0, the connected region in which
| Ipn)| = 1+e, e
if it exists, contains arbitrarily large purely imaginary ml%‘o}:o.

Let w, be a point (if there is one) at which |(w,)| ?\k'-[-e, let D be
the connected region containing w, in which |$(w)l\22 14-¢, and let
Dy and D, be the parts of D in the first and second\gquadrants. If the
lemma ig false, D, and D, meet at most along @finite stretch of the
imaginary axis. Let i¢(w)| < m on thisgtretch. Since ¢(w) = 1+«
on the boundary of D, |$(w)| < M = max(1+e,m) on the boundary
of I, and so, by the Phragmén-Lindelof theorem, throughout D;
and similarly throughout 7, OV

But actually m < 1+¢, so that M = I+e. For the function
i) = (04-)~"p{w), wheré w > 0, satisfies j(w)| < 1+< on the
boundary of D, and :,(r(aQ’é-ri) as |w| oo in D. Henee j{w)| < 1+
thronghout D. Hende '

SO ) < (14wt

A
throughous JJ)and, making - 0, {$(}] < 1+-«. Since the reversed
inequality(#iso holds, (w) = C, where [C} = 1+e. This is incon-
sistentowith [$(u)| < 1, so that D must contain arbitrarily large
P @?“imagiﬂ&r}' values. Also since ¢{év) is real, the reglon

[$(1+w)| =2 1+e

is symmetrical about the imaginary axis, and it is easily seen tl}:at
two regions with the properties of the above D-would have to overlap.
Hence there is only one such connected region.

4 Titehmarsh (8), Crum {2).
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Lemma 8. Let F(w) and K(w) both have the properties of the above
H{w), and let |Fw)K(w)] < e, where y > 0, for all v > 0. They
' there exist o« and B such that «+8 = y,and | F(w)| < &=, |K(w)] < e-Br
Jorallv > 0.
Consider the regions D and IV in which
| Fw)e*®| = 1te, | K(w)eB™| = 14,
where o' and # are any fixed real numbers whose sum is y, and ¢ > 0.
We shall show that either D or D' is empty.
By applying Lemma o to F(w)e** and K{w)ef, we see that D and
D', if they exist, both contain arbitrarily large purely Im‘agmary
values of w. Let iv, be & point of D, iv, a point of D’ %ith », >,
and tvg 8 point of D with v, > v,. Since Disa connetbed region, and
is symmetrical about the imaginary axis, there must'be a closed curve
- joining v, and iy, lying entirely in D, surrouhding sv,. On this
| F(w)e| 2= 14-¢, and so A\
|K(wjer-srn| < 1A &re).
This inequality therefore holds througheut the area enclosed by the
curve, and in particular at 1v,. Th;s involves a contradiction, so that
either D or D' is empty. N

Suppose that, for some w,_ and wy,
[Flw)f > g% and  |K(wy)| > e F.
Then, for some posij:iv’é:g :
Ply)| 32 ke, [K(ey)| 3 (1e)e-F.
Since we have 8Hown that this cannot be so, it follows that either
[Flw)| < eT?'\é"fbr ally > 0, or jK(w)i < e~Bv for all v > 0. Lebabe,
the upper Bound of values of o’ for which the first inequality holds.
it heia\ or all o, F(w) would be identically zero; if it held for no o',.
the. seéond inequality would hold for all 8/, and XK(w) would be
liig:ntleally zero. Otherwise 0 < o <C o0, |F(w)] < e~ for all w
and arbitrarily small ¢, and so [F(w)] < e~ If o = a+te, the
second of the above alternatives holds, so that
K ()] < etpamen — g-<B-aw

for all w, and so [K(w})[ < e#* for all w. This proves the lemmas.

TareorEM 151, Let f and k belong to L(0,v), and let

9@) = [ fylkle—y)dy = 0
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for almost all = in {0,9). Then f{x) = 0 for almost all x in (0,a), and
E(x) = 0 for almost all @ in (0, B), where a-+-8 = y.

' We may suppose that

v ¥

i 1
L jfade <y, ——— | k)| dz < 1,
J@mr) ﬁ[ 4(2«)!

and that f(z) and k(x) are null forz < 0 and z > y. Then g(z) is null
for x <y and « > 2y, and

[ gyt dz < fdw j | fela—y)| dy
¥ oA

- f F) dy j i\ O

j 1f)! dyJ' k(o) dt < %\

As before, the transforms F(w) of f(x), ete., a,re\}e‘lated by
G(w) = J(2m)F (W)K(w),
hence 4

">y
@)K (w) = «‘ j gl d:% T | el

Hence, by Lemma 8, elther F(w) =0or K(w) = 0, or there oxist «
and B such that m+ﬁ\ 30 and |F(w)| < e, |[Kw)] < e for

v >0, Now
fﬁ“” = J@n )mjmw)

by Theoreﬁx 22 and the ordinary method of integrating round 8
contoundn‘the upper half-plane shows that this is 0 if § <o Hence
Fla)is. pull in (0, ), and similarly k(z) is pull in (0,8).

“Truorm 162, I f f and & are integrable over any finile snterval, ki
not null, and

ff )k(—y) dy =0 (0 <% <00,

then f is null in (0,00). .
By the previous theorem f is null in (0,), where aB =77 *
arbitrarily large, § bounded.
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11.11. Another example of an equation with finite Emits ist

fay = f k(t)fle—t) dt, NG RIRY

where k(t) belongs to L%(6, 1), and f(t} to L? over any finite interyal,
Here the integral represents a continuous functlon so that f(x} is, in
fact, continuous,

Let f(x) = e¢**g{z). Then

g(z) = f k(teig(x—1) dt. N

N

1 oA
Taking c 30 large that f (k(t)[e~ct dt < 1, it follows that)
0 A\
@)l < max g@), 7
T—145fsE M'\"
and hence that g(x) is bounded ag - 00. Hénes f(x) = Ofer), Ifwe
assume also that flx) = Q=) as x — 700, the theory of §11.2

applies, (11.11.1) being the partlculaf\éase of (11.2.1) in which
kt)=0for¢t < Oandfort > 1. NV

We can, however, prove mthqut this assumption
THEOREM 153. The solution af (11.11.1) is

I{m} z C gt (11.11.2)
where w, runs through, é?‘w zeros of
. \\
D Ow) = 1— f k(t)etet g
\“
with I(w,,) a{\c and C, is a constant af simple zeros, linear at double
zeros, ek\~
Lot Fw) = -1 f f@)een gz (11.11.3)
~O Jen
.
{cf. § 10.18). Then F (w) is regular for v > ¢, with the above ¢. The
formal argument is then as follows. If g > ¢,

. @+

fla}y (& > a),
F (w)e-tw 11.11.4)
27r}m J; slweiom doo — {0 @<

+ Sohuror {1), Titchmarsh (16).
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Hence, if & > a--1,
T4

f k(t)f (e —t) dt — (2) f F o)tz dyy f k(1) dt,

and {11.11.1) gives

ta{ =
f Fw}Gw)e-mdw =0 (5 > atl),

Ty~

Multiplying by e/, where { = £-+in, 5 > a, and integrating over{

(a-11,00), we obtain _ A\
toa0 O\ -
6 git w)(a+l)d o >
| (w ] W w =0, “.( \
W —an m\\
The resuit may be justified by mean-squarg ﬁheory, a3 in
Thecrem 141. \

Moving the integral to the parallel line thrqugh ia’, where &’ > 7,
we obtain ¢

’ 3

d*w = —2miF ({)G{().

i o

eid-w)a +1

Folw)d(w)

s.’

The left-hand side is an gn‘aly’olc funetion of {, regular for 4 < 4’
It therefore provides bl{‘e\ analytic continuation of the rlght-ha.nd
side thronghont » <@, It follows that F,({} is regular for 4 < a’,
except possibly forpoles at the zeros of G({}. Also

S0 Bew = ot
a8 { o0 uﬁ}fbrmly fory < @ < @’ If the zeros of ((L) are separated
by suitable contours on which [G({)] > const., (11.11.2) follows en
ap fgﬂang the usual contour integrasion to (11.11.4). The result cer-
tainly holds if k(f) is absolutely continuous near ¢ = 1, and &1} # 0;
for then we can integrate by parts and obtain

6wy = 1 E0 o ()

from which the result easily follows.
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Finally, the C, are independent of «; for example, at a simple zero
of G{w),

ta' +m - .

7 a ellw, —wia+l) P
;‘/‘(ﬁ-:-;s‘@'f@b.,) f e
00,  fla)ereriotl) wr+w0{w)e""w dw -
oo 2nG'(w,) » w,—w
fetinderly , Q)
_______ F ()G (w)e—twetliglp,
e ,)J Al

\\

Each of these integrals is zero by Cauchy’s theorem, ’bhe integrands
being regular in the half-plane below the path of. ﬁltegratlon

Similar methods can be applied to the solut‘ton of many other
problems.+

11.12, Examples. The following ex ﬁiﬁé of {11.10.1) is considered
by Bateman (6). A tradesman buyk rhd sells various arficles. It
is assumed (i) that buying and sel]mg are continuous processes, and
that goods bought begin to be siold at onee ; (if) that when the trades-
. man buys a new supply of any article, he buys just as much as he -
can sell in time 7', the samé*for all such purchases ; (iii) that the new
supply sells uniformlyxfiurmg the time 7.

The tradesman\ ar%s with a new supply of unit value, and it i8
required to findhe law according to which purchases must be made
if the value.of the stock is to remain constant.

The ammt of the original stock remaining after time ¢ is k(t),
where, "

\\“' By =1—T ¢<T, 0 (>7T)

: Suppose that articles of value f(r) 5+ are purchased in the interval of
sﬁune between r and =87, This stock is reduced by sales in such a
way that the value of the remainder at time ¢ > 7 is

(t—r)f(r) 5r.

The value at time ¢ of the unsold stock due to purchases is therefore

:
[ k(t—n)f(r) dr.

T Busbridge (6), Cooper (2).
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Hence f satisfies the integral equation

B
1—-k(t) = f kit —fir) dr.

Here
1 1 I —efw
wogp . - {1
= Jier )f (=gt~ -t o)
and
1 .
Gl == f g4 dt— K (w)
NEZ) g O\
. o R R titial O\
Y i o= S
We can take I(w) > 0, and the solution is ) :":'«:
1 o4 I ol '.'\i'
__e'uv —iwd ."’}
J0) = T 2n J. in%—lﬁ—e"wTe di. >0}

=z "1\
This can be expanded in various forms. \If' we move the line of
integration to a parallel line through W= —ib, where b > 0, we
obtain PR\
fe) ! +~~T_#H——‘}° 1o ot gy
- ? 2n JwT 4 1—ewT ’
—h—0
and the last integral is exfmnenblaﬂy small as ¢ > o0, Further terms
in the approxlmataon\%mse from the zeros of the denominator.}

11.13. As anoghgr ‘example we shall sum the series}

D7 ey = z IACVALS (11.13.1)

:"\:h

fo dh
We have |/ (x)} < 1 for all # and 2, and hence
"\ )

\ )
forn = 1 and z > 0. Also, for a fixed £, as # > 0

(&) = O{(§€) /-
Hence we may multiply (11.13.1) by Jy(t—z)fx and integrate term-
% See Watson, § 16.32.

@] = | i) < 2

b -

% See also Goldstein ().
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by-term over (0,t). We obtain

! o ¢
[Brit—nyae = > are) [ H250-0) do
g [t

ne=l

= 3 LML) = V(t—O)— BRI,

by {7.14.6) and the ‘addition formula’ for Bessel coefficients.}
This is an integral equation for f(x)/r of the form (11.10.1); by the

above inequalities, f(z)/z is bounded, so that it is given by {11.10.3}.
Here

¢ p] " 1 ™ \
A o= )f Tl de = e (1—w2)‘}

" where % >> 0, and the branch which is real &1{1\}_')0311:“!& on the real
axis is taken, Sxmila,rly,

Glw) = 5 «/(2 ; f i) Qx}Je(g Netow dz

= 55 )mfwx b)) dx

on integrating by parts. Hence
x 1 H— .
ﬂm—) e 5[ L Deviee f (ult—&) — RN &,
4 D .
where & > 0\ .Now
,\“ ia A

| \&':,,g [ emedu f Git— = O H@et di
* ig—A
A — Yy (w— &) — J(@)HE)),
”'*(&n’d the remainder is-

\ iat =
J' J(l—w )+

dn e~ dw f {(t—E Ty ()T (€) e di
- EJ =5~ (€)} de f “_——-—”(1_;‘%’0)““ -2 du.
0 i@

- The inner integral is 0 if ¢ 3> # (by making a -» o). For { < % ifs
' ' 1 See Watson, § 2.4.
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derivative with respect to ¢ is Indy{t—x){(t—x), by (7.13.8). Hence
on inftegrating the repeated integral by parts, we obtain ’

5 [ Ghte—r—roneyit=s g

1 ® Ji _
-1 f K05 2 praae),

by (7.14.6). Hence

t—z
again by (7.14.6). &

N/

11.14. Abel’s integral equation. This is \

9z) = [ e—y)fy) dy (0 <a <"ﬂ«.<h{’
1]

@ 1 Ti(i—z) J
Rl O L Gn PR ST [ aa—o iR g

and is of the form {11.10.1}, with Ka) = xj‘?‘.\\ﬁere
\ N

where (—~dw)>1 is real on the p}j.;iﬁive imaginary axis, The formal
- solution 18 thervefore N
AN i Glw)
f(x) == £ 3 — “J"{m dw.
}— —gpp)e-1
JEAIG—=) ) (=u)®

If this is an L* solatjon, its integral is

Gw) l—etow

’\ 1 g4 oo
o4 ' . dw
‘Q@ ,J(2‘JT}P(].—-L¥}. f (—iw)*t i
& in-c
:‘:.’ 1 afm trw_. ] H
AN givw_. :
O - s du [ gttt i
\ _ EYSY::
V 2a(X a)m_m (—w) 5
] @ d w+me£w(!—€t).....efw*'
:%—W_“)fg(i) t f T{—a)®
0 tg--0

The inner integral is 0 if £ > # (by making 4 > +c0). For0 <i< 2
the contribution of e is still 0, while the other part is (by def
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the line of integration into the negative imaginary axis)

o

f vl gire__g=i18)( 4} dp = 2sin ma F(l—a)(m—t)“‘l
1]

Hence filz) = s—l—l}@f (x—t)*-Yg(¢) dt,

and f@y =0 8 f (2—t)5-1g(t) dt,

the usual form of solutmn T A
11.15. An equation of Fox. Another equation o£ resultant‘
type is \ - '
f) = g(=)+ j Ha+u)ly) dy.\ (1L15.1)

— @

This is equivalent to the equation conszdereclxby Fox (2). The solu-
tion is a Little more elaborate. We have as before

Fw) = 60+ s f ol | f Ha+y)f9) dy
= 6u)+ ﬁﬁi’f"f(y) ay [ Moty do

.w" 1 ’ ol g R
=& —_— d E{tetud-) gt
\,\(@ﬁ}l— T i o l (v
&G0 y(2m) F(—u) K (x).
Changing thésign of ,
D7 F(—w) = G(—u)+y(2n) F(u) K(—)
O *
and,-¢liminating F(—u),

RN\ ) ' _ Glu)+J2m)G(—u) K(w)
S e
Hene 1 G} 2m)H—u) K () sy,
e J{%) S CLET o (11.16.2)
The form actually com1dered by Fox is
fla) = Q(x)+lj?k(ux)f(u) du, - (11.15.8)
¢

T Boe Bosanquet (1} for & direct study of the solution.
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which is connected with (11.15.1) by obvious transformations. The
corresponding analysis for this equation goes in terms of Mellin
transforms, and the sclution is

+dw0

ﬂ”):'zi?i j @ﬁl"_l%%g)ﬂx—ad& (11.15.4)

TrroREM 154. Let g(x) belong fo L* and k(z} to L, and lel the upper
bound of K(u)K{—u})be less than 1/2w. Then the equation (11.15.1) has
Just one solution of L%, given by (11.15.2). )

As in §11.1, f(z) belongs 4o L* and satisfies the equation. Also the

difference between two solutions of L? satisfies <\
. 7N\
fwy= | Hatuife)dy L)
and so its transform satisfies “\
Fiu) = J@n)F(—u) K@k (11.15.6)
Hence F(—u} = J(%)F(u)K{%\ﬁ},
and s0 Flu)P(—u){1—2rE @K} =0

Hence F(u) or F(—u) is 0 for algiost all u. But, by (11.15.8), if
F(—u) = 0, then Flu)=0. Hence F(u) = 0 for almost all %, and
hence f(x) = O for almost all z.

There are obvious egtensions, €.g. We could simply say that
[1—2rK(u)E(—u)| &> 0- ’

EXAMPLES. (i)\'Iir {11.15.3) let

»\\" kle) = AJ(-?—T)cosx.

Then :.f'\ " R(s) = AT'(8)cos 3,
and(y R(s)R(1—8) = ¥~
Hence, if A2 = 1, the solution is
c+im
1 -2 ds
— 1 {6 A6 (1—8)T'(8)e08 Yemiw
1&) = 5o | et

—

= 1—1)@9'(“’)+ 1j)@~/ Gr) f glujoosan dt
- ! 0

This may be verified by Fourier’s cosine formula.
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(ii) In {11.15.3) let k(2) = n—te-= and

lgg%i&f_)_ 0 <z < 1), Ii’.g_(l—“ﬁﬁ)—g @ > 1).

&

glx) =

h J = "4 —t .._?r_ _\__1_._-_.
Then Ris) = a~(s), Gi(s) 1——s(sin.s1r 1),
and the solution is

e+im

]. w t
T = — —_— = —1 ~F g
f@) = o {3*1 VT )}m ds O

e~im A ¢
2N

—_— g o

=Vt 0<a<l), T T
x x WL

77N
" R

11.16. ‘Dual’ integral equations. In somne’ problems the un-
known function satisfies one integral equatignover part of the range |
(0,00), and a different equation over therést of the range.

For example,t let v{p,2) be the pot@;’@ﬁ of & flat circular electrified
disk of conducting material, its cértre being at the origin, and its
axis along the axis of 2. Thg;,po"oential satisfies the differential

equation Iy M
N L P (11.16.1)
X Np bp " 02®
Let V(u, e)y= f pr(p.2)opu) dp (2 > 0). (11.16.2)
- XN
P APRY o2 3 2 &y
Then ol nihion) du— | (%W)Jacpu) d,
:t\“. 1] 1} .
N\NM, - .
. ’\s..: 329 '. a ,
and OV | o) do = — [ Lot putou) dp.
Ny 0 B ?
““Hence
22V w&’u . ' v , v .
== i) do = —u [ o{Ii(pu)+pudsipu) d
0 i)
= u? f pylpu} dp = w2V,
[
Henc}e ' ¥V = A{u)e—uz_f_ B(u)enz’

t Riemann-Weber, I, § 134,
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and plainly B(u) = 0. Hence, by Hankel's theorem,
v{p,z) = I wd{u)e—w=Jy(pu) du.
1]

Taking the radius of she disk to be unity, the houndary conditions

are .
= const. (z=0',0<p<l}; %—:0 (z=0, p>1).

Hence, writing uA(#) = fluw), f(u) must satisfy

f flpu) du = glp) o<p<l) (L1163
) NS ©

\

[ fowyudilpu) du =0 (> 1) L (1118.4)

0 o~

where, in the above case, gp) is a constant. \
To solve these equations formallyt, apply, Patsoval’s formula for

Mellin transforms to the left-hand sides. W?\ﬁbtajn

- k+iw . . N\
L 9-sT(1—38) s ahs
. om &ls) --—PGTI_——%S} ,{da glp) 0<p< 1),
ki, A\ (11.18.5)
i & )
1 oLl 1) n e . 18.
. j 50 g o (p>D (11168)

where 0 < b << L.(i’iitting

N 2T 11.18.7
the eqq@pi}ns become
N '
\. L .__1.1_(.%19-)—— o1 ds = glp) (0<p <1),
N\ Mk_sw I‘(%+%8)X(S)P (11.18.8)
L Rt io 1“(1-%5) x(s)p-‘?'l ds =0 (> {11.16.9)

Bmi ) TG40
Jo— i
T this fopmn bhe T-function factor in (11188 hss 10 i1301% f{r lzema
for ¢ > 0, and that in (11.16.9) has 1o poles or Zeros oro < 1.
t See also Busbridge (2h Copeon {2):
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Multiplying (11.16.8) by p~*, where o—u > 0, and integrating
over {0, 1), we obtain -

k+im 1 ’
L[ L9 x(9) g =f dop dp = G(1—w) (u <k,

2mi ) D(h+is)s—w
k—1ix

Moving the line of integration to o = &' <C %, '

kL
1 _T3s)  xls} _Tliw)
1—w)—
o3 IS vtwnr Paarashal SR WS R
k' =i N
The left-hand side is regular for > k', and so for « > 0., Hence so
is the right-hand side, Hence so also is & D
T'(3+4w)
(u,)——If(l B{1—w). o 4
Hence {assuming suitable conditions at 111ﬁ111ty}\
ktim \
27 X F(1 —w
k—im ¢ '~ (11.16.10)

Similarly, multiplying (11.16 ) by p~, where o—u << 0, and
integrating over {1,c0), we obta‘ln

E+im

g R
2mi ) (Blg—is)s—w
& 'wK
We conclude as before that {T'(1—4s)/T'(}—$)}x(s), and so x(s), 18
regular for o <;“} . Hence

Lo ]

x(s) —
\M Zm f ds 0 (uw>k)

Movmg the line of mtegratlon from & to k > wu,

\ 1 k-tio
2mi J. fg{;d8=x(w} (u << k). (11.16.11)

k—i=o

From (11.16. 10} (11.16.11)

ki

x(aw) = 2Lm F(I?‘F(—ll_sj)?) (58(_1___8) ds (u<k),

K- . {11.16.12)
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and this, with (11, 16.7) and Mellin’s inversion formula for f{z), gives
the solution.
T glp) = % = const., then

B(1=s) *"OJP s =2

k-tixm
v, T(}+3s) ds v
x(w) = 20:% (i—s)T(3s) e—w 4«{10—10)

k—im

{from the pole at & == 1), Hence

Py 29F(§s) Y 2-t1(1s) A
He) = A Ta—1s  WwlG—3 ~ )
and, by (7.9.8), faa) = 2 Sﬂ%"‘ _{ne.3)
Hence \\

Y,

W

4

v = 2% f e-w.,ﬂ](pu}glﬂ du
T %
o

— P _____2__.___._._..},
. ?”"S“’[J{( .y WY (PRR VTS
the solution obtained by Weber. . )

The pair of equationst \y

[ yfleiddy = g2 ©<z<D (11.16.14)
\\

1]

H@)’i(wy) dy=0 (@>1 (11.16.15)
.'\g~~
can be solvag i’ similar way. They are equivalent to

J. (l"{"%"'i"‘%s) (s)xs—l—ct ds = gla) {0<z < 1),
2}”’ T+ p—tet 80 (11.16.16)

7 kg

LT TG1) geads =0 @ > 1

T ) TGrbta (11.16.17)

fe—da
T
Fe) =21 v+%a—~§8)x(3)

+ See King {1}
1382 z

where



,
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Multiplying (11.16.18) by =*%, where o—u > 0, and integrating
over {0,1), we oblain

1

C ktiw
1 T+dvtis)  x(®) g, fg(m)xarw dz = Gla—w-+1).

2 . TG+ iv—atis) s—w

—fu

Moving the line of integration to o = &’ < %, we obtain

e iw
1 I‘(‘l‘i“zv']"i‘g) X(S)_' ds

2m DE+iv—iatgs) s—w

k—im O

_ TGtdvtiw) w)+(5(a'~;w+l)

= Tt TR
Hence the right-hand side is regular for » > O,“an& we deduce as
before that L0

ktio v/
1 F{l"f—gv—“g(x-l- 28) « B,
= {x<s) el —rsérxl)] % o=0 w<h

k—iw

From (11.16.17) we deduce (11 16 11) as before. Hence

k- iw
x( )_ 1 J P(j—l—lv—“‘l‘d—“gs) {5(G+1—8)d8 ’

2mi P(§+lv+§3) . a—u
RT‘I.CO{{{ 1 B ) .
1 2+ V=3 a“l_fs s ol d
J. P(l.{_l;,_{_z ) ds J. Q(A)}l dA J e 1
)E*,i‘cﬂ 5 P

1

x| o F<%+7v-la+as)() s
7:-1,0_[ g d"f s f TG+ird) W

kE—im

F(-;) J. G A J - 1( ) ”1( _i‘;)*“"l du
= I‘(2%oc} ,f portdp f Q(A}R“(%)Vﬂa#-(l _i‘;)“"l a

1
2 w J _ _
— x d Y] —p2 1o ld .
i) ) 5 #a glpw)p” *H{1—p?) p
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Hence

Ftdo

1 2 TEE S s

f(x) = zﬂik___ P(‘é‘+%¥+%rx—%8)X(&)x ds
1

1

1

= T3 J p dy J glom)p" {1t dp X
ki

. be J 23—0’.

Ip—im

TR0 ()
rEeTe v L

N

4 ) s

2% 1} 2\

( )___ P1+MJV+}¢(P$) d,u. j g(Pp}PvH(I__PS)}m-l dp. A\
] \ ¢

TG )

For this form of the solution to bold we must Suppose gﬁat"& > 0;
the previous equations correspond to v =0, a = -—1:‘}\

As an example, let & = 1, v = 0, glx)=1; the\ splution is

. N
2{giny COBTYL <
! Attt -\ W
@) w( z? :&)

11.17. The method of Hopf aqdjWiener.‘i' A method of Hopf

and Wiener for solving the homogeneous squation

fle) = fk(:g,{@)j@ dy (0<z<) (1L17.1)
+8 )

L% \

. ' N\ .
will now be given. I &pends on the following lemma.

Lesma. Lot $(i) be an analytic funchion, regular in the atrip
—l < o<1, tndle '

\O7 e
O [ i) de < K = Kla)
¢ \ X ' “w . .

iﬂ@?;y interior sirip —1 < —a SV S < 1 {so that, ¥ Wr,
by Yhe lemma of §5.4, $lu-iv) >0 a8 U= 4 o0 uniformly in 68Y
interior strip). _ '

In any interior strip —1 < —B<
a finite number of zeros. If they aré Wi

< B < 1, 1—$(w) has only
w,, We cam write

1—¢(w) - %i%(w—%w.i)...(w-—wﬂ}, (11.17.2)

) — s Wienet,
t Wiener and Hopf (1); Hepf, Badialive Ethbnum, Chap. IV; Paley snd

: Fourier Transforms, Chap. IV.

Q
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N

O

Chap. X]
where ¢, (w) is regular and free from zeros in v < B, dolw) is reguler
and free from zeros in v 2= —B, and, in thesr respective half-planes of
regularity, :
()| > Kl )] > Kholin, (1113)
where k is a positive integer depending on .
Let ) = ()t (0o

(w—1y)...(w—w,) \w-+if ’

.where {w?4-1)in is that single-valued branch in the strip —8 < v <8

which behaves like w® for large w, and where & is an integénwtill to
be determined. Then w{w) - 1 as % -» £=co. Hence we.can chooss
% so that the variation of log yi(w) along the whole strip,i80. Having
fixed k, let log #i(w) denote the branch which tends to' 0 as u—> L.

#0) = (1~ (o {1-+0( NP
|log ¥{w)| belongs to L2 uniformly in thsxs}trip. Hence

. iyt & iyt o
logfw) = 5= logi(z)yy ~ 1 f log () 4,

Z'—:H) ? Pt z—w

KA\ iy=o
o = niw)—xalw) (—y <o <)
where 0 < B < y < 1, bith ;y—ﬁ is s0 small that no zeros of $(v)
Lie in 8 < v < y. NoW yy(w) is regular for v > —v, and regular and
bounded for » 3> /B; and similarly y, for v < 8. Since .
. gXitw) (ap—p)in-k
L380) = G
the resu.@ fn?:-w follows, '
%Epﬁese viow that f(z) is a fanction which satisfies (11.17.1) for &/
regh, and let k(z) = O{e—*!), or more generally let e'=lk(z) belong

(w—wy)...(1w—10,),

\.tgi’oLﬁ(w—oo,w) forall A < 1;and

fl@) =0y (0 <c<1)
Then F,{w) is regular for v > ¢, F_(w) is regular for » < g, and
K(w) is regular for —1 << » < 1, Now

" o

[ Ha—uf@)dy = [ Me—uily) dy

D]

-—0

(where fi{y) = f{y) (¥ > 0), 0 (¥ < 0))
LA ]

= f P K we-i= dw (¢ < <1}
ia—m
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by Theorem 64. The equation {11.17.1) therefore gives d

izt —igt e

[ Futw)a—ye@emE et dw + [ Fiweimdo=o.

in— —fg—a
Hence each integrand is regular throughout the strip —a < v < 9,
and in this strip

F, (w}1 —y@m) K )} + F () = 0.

If %yy..r Wy 816 the zeros of 1—yj(2mK(w) in —a < v < @, by the

1
IR P o). () () = O,
$o(w) O\

where ¢, and ¢, have the properties stated in the lomma. W tan’

write this F.(w) F. (w) ) :"’*.
) (7T = T g

and here the left ha.nd side is regular for v > —a, the nghh-hand side

for v < @. Hence each side is an integral functxo}l and by (11.17.3)

this must be a polynomial of degree not eme\edmg in—k. Hence

¢ (‘w),P(W)
+(w) (w ;}4)” (w__wn)
where P{w) is a polynoxmal Helme
fatd

flz) = ___,_2@_)_1_)9_");—* =t dw
\/(27% ) Gooy).. (o 0s)

satisfies the original gquation {and vanishes for z < 0).

As a simple agample, let
.\"I.‘f' k) = Ae-w <A<
2 \ 1
K(w) gtz 4iaw iy = 2A —a
W ,J(g 4(21!') 14w

\
o _wf=(Bl)
_4(217)K(w) =l-gra ™ witl

The roots are w = +4/(2A-—1) = Wi ¥z and
X —-w,)

1 JenKe) = "o

Py (20) = __1_1’, $olw) = w
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_ (P,

" P(w) = const.,

| ¢ wt
_f(x)=4(2n) f iy wn A

C[M,zx ooy 1—/(1—22) —Nl_—z’“}.

2,/(1—2}) S eja—23)
11.18. An equatlon of A. C. Dixon. A similar problem is pre-
sented by the equationt g LN
flz) = glz)+A f& dt. AN1118.)
] ztt R \J
2] £
This is satisfied formally by o
f(@) = g@)+2 f soxw ) D (11182
if x(x, 8 satlsﬁes the integral equatmn N
f) = ds 11.18.3}
e - = ﬂ" J\‘ y. (

Putting x = e, y = e-’? t = e\"ﬁ thls is
f LU Cad g“.s)
etty(et o) = N0 s 01X d
xle )= §+e-ﬁ Aj 2cosh LH{E—n)
1]
or, writing e"*fx(e\f' er}) = (§),

ek ) (11.18.4
"f’(a e~£+e~ﬁ+ f‘zaash TE ) 4. ( )

~ Sup ose‘\ha.t HEY = O(ectél), Where 0 < o< i Let c<a<}
Theny 718.4) is equivalent to :

¥

‘iﬂn['no —im 4 oo
j D, (whetmw dy 4- f O _(w)etnw dp
_w_. .
? e&ﬁﬁwﬁ i e +(w) tow o
= () cosh mp dw*kajcoh%e_..

where —3 < b < 1. We can take b — a. It follows that

A T é?ﬁﬁﬁw w
O (w)f1—— 20y [Ty €T 11.18.5)
.+.(w.)(_ COShﬂ“w) /\/ (2) coshmw (!

1 A. C. Dixon {2). i S
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and —@_(w) are regular and equal in the strip —a < < a. Hence
(11.18.5) i8 regular for v < §. Hence ®,(w} is regular for v < §,
except possibly for simple poles at the zeros of cosh rw—mnA. Suppose
for example that )\ = sinamw, where 0 < « < }. Then the zeros

R e e A
. AN _,_._q)“'@_
Hence Y1) = [T e folT(—fo— 1)

is regular for v << &
To cancel the poles of sechmw in (1 1.18.5) we must also have

1
— — .. _gbvifw A
9,00 = = 377" , e
at 1 = —3i,..., —(@+i,.... Hence ’ by

' e(n.+1),3 \ 3

_ P S ’
Y-+ Di} = 5 T Ta—lod®)

say. The most obvious function with these prpggnties is

i &~ 1Ny
¥ — VAN T,
(w) I_'(:};-—'iw)w;)- nl :.‘w—}-‘(n—k—%)a
and it is easily verified that this'dggs)i’r:i fact give a solution.
' The difference between two seligions of (11.18.4) satisfies

F e gy 11.18.6)
qb{.éz'\t}\a" % cosh H{(E—n) » (
which is of the forfaX11.17.1). Here

1—4(2w)g{i@§~; 1 m™_

\$ ~ coshmw -
O oal (=) ™) __ s
AN FE— 3o bl (- ga‘w)r(g+;a-i—é'iw)f‘(iﬂa—bw)

R (e e

where 97T (3-+it0)

R e
blw) = E(:;%: 14— Hiw)D (G +-do— i)

e

r—mw)

have the properties stated in §11.17..
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11.19. A problem of radiative equilibrium.¥ Consider 5
medium stratified in planes perpendicular to the axis of 2, exbendmg
indefinitely on the positive side of its boundary « = 0,

Let I (a function of ¢ and §) be the intensity of radiation of all wave-
lengths, at any point, in a direction making an angle 8 with the nega-
tive direction of the axis of z. Let p be the density at any point, and
k the coefficient of mass-absorption, supposed independent of the
wave-length. Let B (a function of 2} be the intensity of black-body
radiation corresponding to the temperature of the matter at z,

The rate of absorption of energy per unit volume from the radia-
tion in a solid angle w is )

kp [ I dw, O
while the rate of emission is N

kp IJ Bdw = kpBew, ,"‘;\\ .

Consider a narrow circular cylinder, a,rea\ of cross-gection g, the
centres of whose ends are at x and 2, an ~wltose axis makes an angle
§ with the negative wx-axis. The energy radiated from the 2’-end
through a distant area in the line of the’axis of the cylinder, at which
all points of the eylinder subtend appromma,tely the same small solid
angle w, is I(z’, B)aw; this i is m‘ade up of I{x, 8)acw from the x-end,

together with }- Fcp B— 1w dv

from the interior of %: cylinder, v being its element of volume.
In the Yimit as ¢ w-> 0 we obtain

f(x 8) == I{z, 8)— J kp(B— Isec 8 d¢,

and, ma,k{n.g z >z, *
O ol 1.19.1)
i kpsec8(I— B). (1 _

Eor radiative equilibrium, the rate of absorption of energy per

uhit volume from all directions is equal to the rate of emission in all
directions; this gives

ArkoB — kpdeISIned&

= 2mlp f Isinf d6,
1]

T E. A. Milne (1), Hopf (3); Hopf, Radiative Equilibrium.



1119 INTEGRAL EQUATIONS .3

ie. 2B = | Isinf df. (11 19.2)
0
Putting r = J’ kp de,
a
el
(11.19.1) becomes 7 = see{I— B). (11.19.3) -
Hence I= e"ﬁe“a[K—— I Big)sec§ e dt]
A

The boundary condition is that the incident radiation is zero, ie.
that I = 0 for x =0, jm < 8 < w. Hence KoY

N\

4
N/

I = —gveect j B(t)secﬂa—‘mﬁ & (< 8 < n’j
(11.19.4)
For0 < 8§ < gmwe choose K so that I 'is not expomnmlly large 88
T, i.e. we obtain \
\\
I = eroeof j B(z)secee-fmﬂdt xo <8< §m).

Inserting these results in (11 18 2‘) we obtain

B(r) =1 I erseefging QQ\T\B(t)sec et dt —
| N

AW
) .

,\' _
_rB(t)dt j e(f“)“"*"etanﬂ dé —

-3 j ¢reosind db | [ Biijsoo et ds
' 0

\”\ -t j B(t) dt j gr-tmeltand b

4 ' 11.10.8
j B(t)k(=—1) dt, (11.185)

=

jar e 4
where k(=1 j g-imeltand de = I 51
f

b
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We can now appeal to the theory of § 11.17. We have, if <1,

S S P S e
K(w) = 3j@m) f e de‘Tdﬁ—\@ﬂfcosmdwf_A_d)l
—m (k4 a &

1 . e = 1 arctanw
- .. e dy = . - 2TENH
e f e Jem Tw
: :
80 that 1—(2m) K (w) = a“'-‘ﬁufn—w. .
This has a double zero at the origin, and no other zerosa’h the strip
—1 < v < 1. Hence, with the notation of §11. 17 %\put

_ arctan w 'w2+ 1~
) = (1200 “e
no additional factor hemg needed. Hen&

) = o j o mtan\z)zm} o

22 Jz—w

Also P(w) = 0¢+Bw where a and B are constants, and the solution is
S datm

a 0&-{—'8 w —drr (i)
B(T)j,‘,-;\«/(%) J. e duw.

11.20. The J.uniting form of Milne’s equation.f Writing

fB(r) dr, aqf(m) (11.19.5) may also be written

:'Z?\w:% f fity e j iy

\./ ) |=—=4f

f Ty if 70 dt

max(i] T—y)

ll

Jl

f' ﬂ{f(w+y)—f(x~yJ} dy —f—l f  flwty) dy.
¢ 2 ¥ (11.20.1)

t E. A. lena ay Hardy and Titchmarsh ( 1}, (2). Bee also Hopf (2).
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For large values of & this approximates to the form
v —¥
f@=1% f e—y-{f(x+y)~f(:c-—y)} dy. (11.20.2)
1]
TaeoBEM 155. If flx) = O(e?)), where 0 < ¢ < 1, and both sides
of {11.20.2) are finite and equal for every «, then f(x) is a quadralic.
The formal argument is gimilar to that of §11.2. We have
1 gl @ 1' bt -
= o F.lwe—t® dw + ——— I F_(w)e—=® dw,
fr = gy | F0) & ) P
wlo " et (11.20.3)
where 1 >a > ¢, —1 <b<—¢C. Hence )\
PR\

ta-+m C

' 24 , G\
flz+y)—fle—y) = -—:/(2—:) J F (wisinyw e = dwe>h,
{a—oa M‘\ﬁ 7 .
f b y)—fe—y) & N
; : y y X . L ) ,"\\:
2. Qg @ ~N,\Be"v .
2 14 ° s —_
= "Jen, ] e dw[,j T
. t’.a-i-w",’::}“. .
= ___22_"— I “F, (w)arotan w e~ dw — s
N ”Law

(11.20.4)
N

the dotg indicating mﬁch case the corresponding term involving
F (w). Also \J

\,f{(:?ﬁ"é - 4(;) f P (w)weioo dw — e (11.20.5)
AN _

ig—w
Hence, (11°20.2) gives
N

A\ ot o
A% J F+(w)(w-ﬂa,rctanw)e“m dw +..=0.
ig—w
Hence, by Theorem 141, p. 256, Fy() and F._(w) are regulsr for

b < v < o, except possibly for & triple pole at the origin corTe-

i triple . and F.(w) = —F()-
sponding to the triple zero of w——a,reta,m_o, and £y
Evaluating (11.20.3) by the caloulus of residuos, it follows that f(z)

is a quadratic. .



348 INTEGRAL EQUATIONS , Chap. XI

To justify the process we shall first prove that e=<ilf'(x) belongs 1o
L3(—c0,00) if ¢/ > ¢. For (11.20.2) gives

1
) = 3 [ fety—fle—y)
F@) =4 j ; y +

1

HUS_ 1

= 1$(@)+1p), | ~
say. If |f(a)] < Keo,

ety —fa—y)} dy + f ‘i;{f(xw)—f{x—y)} dy
1 X

7N, ¢
2 A\AN

I o ;.'\
lWiz)| < K J' (ool L gole—vt) dy - f e¥(eete v |- o) Wy < Ko,
<N
0 S

We may write Pz} = tff) dt, \
@1 \\J
where the integral is a principal value a Y= x. We now appeal to
the theory of conjugate functions. Let

95(2:) J’f(‘) dt.

£31 @ £+2
Then | i¢1(x>:2dx\< f @) Pde = =* [ 1f(0))2 e
£ N e -2
by {5.3.3}. Also fmg 1<x<§—|~1
st — qbga) f‘” ) at| 4 .f_(*) dt
"\ T 1
' ~\ §+2+ é+2 i
. ;:\;" < 2 g i 2dt)
(o2 o
£+2
<4 [ o a)t
£-2
Altogether it follows that
£+1

I Wx)i*dMA f ff{x)12dx<xew

£ £l
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Hence £+1 :
[ @) de < Kook,
3 |

+3

[ v @i s < Kook,
&1
and the result stated follows. -

1t now follows that the integrals (11.20.5) exist in the mean-square
sense, wik {(w) being L3ig—on, ta+o0) if a > ¢ Also the inversion
of (11.20.4) is justified by absolute convergence; for sinyw is O(e™)
for all y, and O |yw|) for small |yw], andsois

Olywliem) e
for all y and w; and \ O
fa+ o i © " .( N
J‘ |F (w)w dw} I y~tele- 1 dy \\
{g—w il }

is convergent. This completes the proof. x

N
Tt has been proved by a more complic&tediu’eéﬂod‘t that the result
holds under less restrictive assumptionse\
11.21. Bateman’s eqﬁatiomi,:éﬁp;mse that a function f(z} i
represented by Fourier’s single-{aitegral formula (1.1.7), not merely
in the limit, but for some value of 2, A = a say, exactly. Then

A\ o '
+8 1) . .
f(:jc)\é% j'f(y)sl%_% dy (11.20.1)

for a given a anthill . "
This is an itegral equation of the form (11.2.1), but the conditions

if §11.2 ag&;“riot satisfied, and the solution takes quite & different
form, «\“
Suippose that f(z) belongs 10 L¥(—0,) Lot
(o) — sinazfe,  Gla) = am) (el < 0 (1>
Then (2.1.8) gives

_jP L (?’j?‘ig%ﬂ_@ dy = J (%) _Jj ;"(t)e-f“ . (1.21.2)

+ Heardy and Titchmarsh (9): .
% Bateman (1), Bardy (2); Hardy and Tischmarsh (1) () -
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Hence

Ja) = '\/(2 ) J F(tye—ict dt, (11.21.3)

i.e, f(x) is a finite trigonometrical integral. Conversely, if f(a) is of
the form {11.21.3), where F is L% (11.21.1) follows from {11.21.2),
Hence

THEOREM 156. A necessary and sufficient condition that a funclion
F(x) of L? should be a solution of (11.21.1) 1s that it should be of the form
(11.21.3), where F 18 L3 —a,a). N\

There are, however, simple solutions of (11.21.1} ngt, belonging
to L2; for example, cosbdz and sinbx are solutions g < b < a,
though not if |6| > |¢]. The next theorem 1ncludes these solu-

tions.
TuroReM 157, Let f(x)/(l+ix[) belong to ﬁ}—-—oo o), and let
Tmcos f(a:)d NEOS f(x)d |
. gin J sin

\ = — 0

exist, Then, if f(x) satisfies (1 Iy 21 1) it is of t}‘ee Jorm

f@) =< F0)-+ j selw)e=" da,

where x(u) belongs 16" bz(—a a).
Itis easﬂy veﬁﬁed that

12

:[\;(ewu.,_ewcmgng)e_um dot — %{sina(x—y)_sin ay}.
e P

o E—y ¥
Hencp™” -

K 1 sine(z—y) sinay

AW f@-f0) =~ f{ g g ]f(y’d-'f

— x J. -ﬂg) dy f {eivu_ givassn ﬂ)g—fx“ du
2 Y :

— .a_: f g—izy du f j&l (eiyu__'eiyasgnu) dy
2 y

T

if we can invert the order of integration. This is obviously per-
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missible for the part with |y| < 1, and for the part involving efvasn*
and ly| > 1. Also fly)fy is 12—, —1) and L¥1,c0), and the

integrals _1f( ) ®
W) piyu d;!}, J. -@ Ayt

exist in the mean-square sense. The inversion for these is a case of
Parseval’s formula in L? theory. The y-integral represents & function
of L¥—a,a), and this is the result stated.

TarorEM 158, Lel

.
f) =[O+ | xtwe=du, O\
. A . R
where y(w)f{a*—v?) is L(—o,a). Then . A
A .
* m\\
fay = Lrim [ E fa—y) O
T A0 y \
—x N
We may suppose f(0) = 0. Then o\
A A . { ’ ‘a
[ [ 22 iy [ sttt
Y ¥ a8
Y C A ) a
a S I )
=2 f x(w)e~= du j SR gy — j x(w)e~= du I sinay e dy.
2 : _,ﬁ'\\’y- 2 2

M, a . .
The first term>tends to = _[ e-ivuy(u} du = nf(z), by the bounded

e ) * '_-a . . "
COﬂverge{gae;a the inner integral. The second term 18
A S

W . A
:—,3551‘. e—toty(u) du j gin oy S_inyu dy
' ¢ gin{e—u)A sin(a+#)A| 4 ,
= I-ﬂ”‘*“x(“’l-;:'r ——axu

which tends to 0 as A—-co with the gi¥en
result, ' : .
is & case of both theee

“The function f(z)= sinbz (6] <@ oo
theorems; f{x) = sinax is not & golution of the equatiot.

conditions, Hence. the
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Also, if 0<Cm < n, 27™J () is a solution of the equation with
a =1, For

Jolx) an- nedpizy 4
xm 2"\171"(?1—}-%} j (1—gfrmie™v dy

H—tn vy iy
2%’11-]_"(?1,—;- ( ) (1—y2yn—t gtV dy,

A

11.22. Kapteyn's equation.f A Neumann series (for an odd
function) is an expangion of the form RN
S

Jiz) = 2 Bgn 11 Samaa{T): (11.22.1)

If f(x) is given, the coefficients a,,,, may be@btamed formally as
follows. We have (e.g. from (7.10.1))

0‘\ ‘ (m # )},
stmﬂ(t)Jem(t) = 1 @) =) (11.22.2)

Hence, multlplvlng by J?mﬂ(t)ﬂ and integrating over (0,00), we
cbtain AN

a1 C4ﬁi+2) f f(z)'M de. (11.22.3)

...\ 0
The series formed\th‘h these coefficients is

Z (ant \mmtm) sy g

\u
NN

\(prowded that we may integrate term-by-term)

—3 f 0@ f (e S RCACR PIEES

IT {Z (4“‘*2)*72%1(%)%5“(#}] d

=10

t+fv

j.z,@_v) o [ofH A

T 8eo Watson § 16.4, Hardy and Titchmarsh {1}
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by §1L 12 The inner integral ia .

[f( wt0) 2 gy +ff(u SLC

- fﬂf<u+vJ+f(u-v)}-ﬁj?du 12 o050,
and the last term gives '
| f o) do [ P B e = f f) da f T~y 204 g,

'\\'

= [ 1 uphie—u) du = fla)— f f (u)Jtm—u;du

4

on integrating by parts. The surz of the series is therequ Ty if
ff(u)e%(x—fu) = f Sz —v) du f (el ’u)}"l‘f’
and, by Theorem 150, this implies that ()"
Fo) =13 f {f{§+u)+f{§ u)}“’l‘f’ & (.224)

This is Kapteyn’s integral eg.(ratlon

11.23. Before proceedis@ to rlgorous analysis, we ghall prove the

following lemma.
\$/

LeMMa. For a:.’}vo i 0,
(4n \z“)i.fw(x)eﬁzmten — Ofimin(e®, emia(®, 1),

3

We lgme L@ 0eh) (< - (11.28.0)

™ —=0(l) (all nand 2), (11.23.2)

and I (x) = o{.@‘?% } _ o{ «rln (xe) } (all n and z), (11.23.3)
/A
80 that in particular

Jiz) = 02" (>

02
: AR

). {11.23.4}
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Yor z > 1, 2ex < ¢ the above sum is therefore

= b -
DR IDLEAE

_ = Q@)+ 01+ Oe=4) = O@™h).
For 1 < x <<t < 2exibis

O(n)+ i o(;f:) = Ot) = Oz,

n+rl=3
Forz < ¥ titis A
kY]

3 e\n = e\ O
2 30[% \/n(-éa) }+ Z O{x‘*"\fn(% l ~\

In+1l=

Forx <1, t1itis

i AL ~Nx\“
S O{x3t3(§) :},= 0.

Trmorey 159, Let f(z) be aiodd function of «, and let f(z) REEY
belong to L{--c0,0). Thent necessary and sufficient condition that
flx) should be expressu fe by the Neumann series (11.22.1), with the
coefficients (11.22.3,),\5&: t flz) should satisfy (11.22.4). '

Suppose first hat f(x) is expressible by the above series.
It follows:fifom the lemma that, for a fixed =z,

NS
O3 tint Dl (@ en )| = Ofmin{1,7)};
O ¢

z’uid'%he inversion of the above summation and integration is justified
~by absolute convergence.

" Tt is also clear from (11.23.3) that, if f{z} is expressible by (11.22.1),
it is {like the sum of a power series) differcntiable any number of
times within the range of convergence of the series (here 0 to a0)-
The final integration by parts is therefore justified. Hence Kapteyn's
équation holds.

Conversely, if (11.22.4) holds, then f'(u) is continuous, by the
uniform convergence of the integral. The argument can therefore be
reversed.
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11.24. Solution of Kapteyn’s equation. Since, in § 11.22, flz)
is odd, (11.22.4) may be written

fluy =14 j {f(u+f)~f(u~§)}"1‘5’de (11.241)

or f@)=—% J Jlz— y)‘r’(y}sgny dy, {11.24.2)

and in this form f{z) is not necessarﬂy odd.

TaroREM 160. Let f(x) belong to LH{—w0,00). Then o necessary end N\

sufficient condition that (11,24, 2) sﬁmd,d hold for all values of x i8 ﬂm&

N
fl) = j $lu)ei du, AV
where () belongs to LH—1 1), 'm..\.\;
The Fourier transform of glx) = o (m)sgn N
\“Q

o\

o= i 5

i e R

Hence, if F is the transformg of f
\

jf( y)° ‘(y)sgny = i J (2) f Ltii(i}/st:ﬁl) ¥

O

v 2) F(t)e .
S5 fmoemas
NO7 TR
—% Of th,e mtegral of this with respect to 215
\”‘ j Fe= it
«/(27?) lﬂ‘r\/(tz 1} ©
1 F(t)e"" dt
gufficient condition
o constent, 18 that

+~J(2 ) J

and, by the theory of §3 the necessary and
that this should equal f&), or Jiffer from it bY
F(t) = 0for jt| > 1. This proves the theorem.
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TrroreM 161, If

i
F@) = fO)+2 [ xtwe= du,
-1
where y(w)J(1—u?) belongs to L(—1,1), then f(x) is a solution of

(11.24.1), .
The term f(0) is a solution, so may be omitted. We then have -

o

3| vero-te—eyP a
L]

o 1 £\ °*
[ H04era¢ [ xtwersorte =
¢ -1

Dol e

kY

o0 ,"\1 ’
3 [ 20 agide | xeiebrde
i |

2] ¢
1 ’ ‘:\}:
- iz f x(u)e-f-ef’&\ f ‘%asinfu dé +

-1 o\ &

®
S ] xwer du [ Jy(€)eos budé
" ' -1 é

A\ . : : .
=, L2 | x(w)uwe = du + | ylu)e ™ du = [z
R )
(Watson, § 13%2}:&‘ the inversions are justified. '

The rep gted integral with the factor a outside Is absolutely
convergents the inversion of the other is justified by dominated
convergence provided that

o fJ (E)cosu dé| <
N - ] 1 ! ‘\/(1 —uf)
for all 7.
Here the leading term in the asymptotic expansion gives terms Like

f‘i&?m dt - J?G"Sfi,-"i) df +on = Q{;/(T{__u*)]%""

CNE

and the result follows. o _
f(x} = sinz is an example of this theorem.
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TazoreM 162. Let fl@)/(1+2]) belong o L¥—o0,c0), and
@)1+ |zt fo L(—c0,00). Then, if f(z) satisfies Kapteyn’s equation,

1
o) == | s,
—~1

where x(u) belongs to L—1,1).

The formal argument here is that, 1f flx) satisfies Kapteyn's
equation, it is expansible in the form (11.22.1); and then

ff( 2O g z“wﬂ j L) o) do

= Z G i1 Fonnalf) = = fié). ("}"M

Thus fiz) satisfies Bateman’s equation (with & = 1),1md 50 is equal
to a Fourier integral with limits (—1, 1). Owing to convergence
difficulties we have to apply the arglment@ﬂlrecﬂy We have
instead \

N 3

1 f f (93)—‘31 AL sm(f I) de = 2 %n-n. j. Bm(f -—a:) Jm+l(3) dx

N

\"\

S )
= Z on 1= 23 B {.a
This inversion is ]ust}ﬁed by absolute convergence,

of §11.23 shows ’\oha;t

2\@1 2 f U ‘:’ Fania®

is convergent
”‘Ii': how follows from Theorem 156 that

AV

&

gyl

gince the lemms

¢ ‘sin(e—a:)
—

Fon1(Z)
dtj —ﬂ-’;{ dz

flz)—a (x)-—ﬂxJ:l(E) J ¢(u)g—m du,

where $(u) belongs to Lﬁ(——l 1). Hence

f(-"?) oy (%) gev dr (—1 <u<l)
x®

$(u) =

-—-0)
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and, since {f(x)--a, J(x)}/z belongs to LA —o0,c0), $(x) is the integral
of the integral of a function of L? Integrating by parts twice, we
obtain
1
f(x}—zlgx_(x_) = w(aets-{be)+-{ce*+de=)+ | x(ule~t=v du,

-1
where y is L2(—1,1); since the Ieft-hand side is L*(—o0, @), @, b, ¢,
and d must vanish. This proves the theorem.

- 11.25. A differential equation of fractional order, The
integral equationt « N
A A\ ox
1) = o j G- ey dy AL
(o) S
may be regarded as a differential equation of oxzder o Suppose, for
‘example, that « is a positive integer p, that f(x)"‘t‘}nds to 0, as z > o0,
with sufficient mp1dity, and that . \
of \o
i) = j 1) dy, fa(w) f hly) dy,..

Then, if we integrate repeatedly by pa.rts, and write z for f,(x),.
(11.25.1) becomes d N
CE < (— 1)

The only solutions, of th\ls are finite combinations of exponentials.
The general equ\tslon (11.25.1) is of the form (11.2.1), with

o
The \e\ory of §11.2 is not applicable, since k(s,) does not satisfy
(11.23). But the equation still has exponential solutions. The
ccmd:ltmns that f(x) = e~ should be a solution are that R{a) > 0

\and A = a®, where a* means ¢®1°¢¢, and log« has its principal value.
If A > 0, @ may have any of the values

AVeaprmife (?" =40, :[:1,...)

for which |2rrja| << im. If o <{ 4, and in particular if « < L, the
only admissible value of & is AY~, We shall prove that in this case,
at any rate, the solution is unique,

?c(x) (>0, 0 (:2: < O).

1T Hardy and Titehmarsh (7).
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THEOREM i63. Let flx) be integrable over any finite interval
e ST S x2,16$ﬁ>0 0 < o<1, andle

fle) = T@) j {(y—x)*f(y) dy {11.26.2)

for every positive X. Then : _
flw) = Ces,
where @ = AU, and Cisa constont.

1f §{s) is the Mellin transform of f(:r:) we bave forma.]ly _

56 = 7 j xa-ldxj(y ol R

- jf(y) &y j pg-aetde o\
(@) N
m\ W
M"‘(s) 8
(s _;_G)TS(S%-G} \

We shall prove that this is in fact true, and Qaa} our solution on it
but we cannot justify the inversions a8 thby‘stand and we have to
- proceed indirectly. We require the foﬂuwing lemma.

Lett fe) = f Fug-—a do
fOr'wery positive z. Th\anz.j B >0, N
- 1 - b1 dy,
B j RSSO 4 | lay—§- a8
ie. ‘\ O =Fop (11.25.9)

To pmv'é\tlus wo have to justify the inversion

J;“-’f}ﬁ-‘ o | fog—ar j s | (x—_s)ﬂ—lw—-z}ﬂ-l .

Clearl], c... c...:—-— i e | e
early &st F;‘; 5;[3 A

and it is sufﬁclcnt to prove thab

I= I J) dy j ol 80

conditions.
T Bee Bosanquet. {1)fora pmof ander moueh more 8’9991‘3‘1
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£1-8 '
and J = j i) dy [ (=8 Hy—a)tds >0
£+8 g
as 8§ > 0, Now

-5 T s,

and the result for this follows £mn1 the second mean-value th
and the existence of f ) (y—£)*- dy.

- Also £+d

J= f 19— dy [ @—ep(t=5 : s,
£ N
and the inner mterrral is steadily increasing Wlth y, and its’
when y = cis O(Sﬂ) Hence the result for thiB part also follows

the second mean-value theorem. \‘
Proof of Theorem 163. Letc > 1 B < & < e, and writs
\
—_ ua—,'hd J. f— -1 a
1@ = 5 j fo)y— i+ | Tw—a)
= M (x)-i-?tg(x)a ;
say. Then

a1,
| (x\) T f {2)+aty—o) dy
O o) )
by (11.253) Hence

O Fa) = M@)+ 2L @)+ XLl

Repéating the argument, we obtain

O @) = MA@ AN po@) N ), (11

1 [
h == Y1 .
where Fule) = s | 10—t dy
By taking » large enough, in particular no > 1, we obtain
1 F
e < $@-+; [ ol d, (1

where ¢(x) is bounded as x> 0. Hence f(z) is bounded as
otherwise there would be a sequence of values of z such
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fz) = f (y) (@<y<e) [f@)i~>om, which iz inconsistent with
(11.25.5). 1t then fo}lows that f% (x) is continuous for 0 < 2 < ¢, and
_ hence so is f(x). Denote its limit as 2 > 0 by f(0).

We can also differentiate (11.25.4), and it follows that f'(z) is
pounded near the origin. The argument could be carried on in-
definitely, but all we require is that -

Jl@)=f(0) = Oz} -

asx - 0.

Now (s} = J{f(x)—f(())}:cs-ldx + J st de +f(0)

A
primarily for ¢ <o <a, and then, as an analyt.lc continuation of
(), for —1 < o < Sinee - - .'\\\

J Foyet dw = _-!(L) (0 <0), "'(J}‘:
. \'\.‘
we have H(s) = j {_f(:a:)—f((})}:r:“—1 de (wl < o < 0).

Inserting values of f(:c) and f(O) given by (1\1 25 2), we obtain formally

50 = 1 j a1 dn f {(y—w)«-l—-y“-l}f(y) iy +

\ +1“(a) .[ xs-idxjy““f(y)dv

" -0

B FL J y) 4 f gty

LA ey | 2
AN D) ens L) dy +
\”‘"\ F( ) f fly ){I‘(s—{-a} 8 ]
+“‘1d§‘
SP(“) I fw' |
A(s)
_ D) ot dy = 3{s+a)
= Plota Tlota) J.f(y)ys f‘(s—{—o:

- <0
We shall show that tius process is valid if —0 <7 _

-
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For the first term, the integral over y <{ N can plainly be inverted,
and it is sufficient to prove that

N —0 .
J.xs—l du f {y—2)1—y>Yf(y) dy (11.25.6)
0 N
and | xs_ldx]" {(y—x)-1—y-Uf(y) dy (11.25.7)
N

tend to 0 as N -, Now by the second mean- value theorem

f (ot dy = {(1-5) 7] f y=-3fly) >

e \
the last mtegral is bounded, and N

~ (O
N
o ’ \
giving the resnlt for (11 25.6). Also (11.25. '?) i3 ’

Te) J (@) do — fxs umxji y<) dy,

which plainly tends to 0, R\ ¥

The inversion of the second t&m is equivalent to mtegratlon by
parts: 3

f 21 de f yo-fly) Ay [ f ¥ dy] —= f o+ (%)
§ L\
and the mtegrated ferm tends 1;0 0 at each Hmit.
Let o) x(s) = Mo T,

T(s)
Then thMove result is equivalent to

\ x(8-t+-w) = x{s).
Thuﬁ x(s) has the period «, and is regular for —1 < o < 0, and s0

everywhere Also, if h{z) = _[ fopy*-Ltdy = o(1),

F(s) = 0(1)+ j f(x}xs—ldw

= 0(1)+h(1)+(3 —a) f}&(x)x& -1 g

=0(t)) (—l<o< 0)
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Hence x(8) = O(lt{de¥nt)
for —1 <o <0, and so on any line parallel to the imaginary axis.
Hence 1 '
xlogz
| {'or)

ix one-valued, and O(log#rr**) as 2] = r-»c0, and O{log4(1fr)r-t)
ag r—» 0. Hence x(s}is a constant, :

Fls) = CT(M™,
and, by Theorem 32,
c k4io . o
fw) =32 j D{sp-iez—ds (0< k<) RN,
k—iw . R \

77
1z T R 1

= Ce . K7,

11.26. A probability problem.f A functionf(z), such that .
f() > 0 and e 7\

[ fo)yde =300

defines a law of errors, which asgérﬁ;“ thﬁt the probability that the

error in making a, certain me Itii'é;nent lies within the rangé {zn )

x‘ % S aqm . 2
is If () d; or that, for ms%all 3z, the probabﬂlty that the error hel

o + 8 ) ) )
in (2, x}-5a) s to a fiwst @ proximation f(z) Sz.

Suppese )th&t We:irs:erfe two quantities P and Q, an‘tli that the
erTors in observing them, p and ¢, are distributed 'accordmg tt}), lavg
flz) and g(x{\lt is required to find the corresponding law fo:h +

It p 81\{@‘4 are capable of taking integer values on-ly, and the p:;e .
Portieli: of times that p is % 18 Flx), _'a,nd_ that ¢ is ¥ 18 gly), then te
pr?pjftion of times that p+q 18 ¢is o
v p Esf(w)g(y) = g.f(x)g(f‘x)s

Y=

ie. the ‘resultant’ of f and g- - ith
In the continuous case, & similer 878 ent !

- gly) 8y leads to

flz) 8 oud

ff(x)g(&-x) %

f Polya (2]-
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as the law for p+9. We can prove this rigorously as follows, Strictly,
p and ¢ run through sets of points E; and E, such that

mE(p<o)= | faydu, mBq<a)= | oty du.

-

Let hw) = [ feydu, @)= [ g du.

Consider the sum
8 znzm91(§“n8)[fl{(n+l)8}—— fi(n8)]. -

The term in » represents the probability that p is in (8, (90-1)3) and
g i8 L £—nd. For such p and ¢, p+¢q < £€+8. On théother hand,
if p4q < ¢, then n8 < p (n+1)8 and ¢ < f——'na for some n.

Henee  wB(p g < 8) < 8 < mE(p-+q B4,
Since f is L, and g, is continuous and tends¥o 0 as z > —o0 and
to 1 as & > c0, it is easily seen that

o  nt1)3 \\:
m 3, | ol Swe—no de—o,
ie. that lim § j—:.;f Pigwte—1) ae.
Hence e

nE(p+q < & = JOg,e—1)

...—-oo

j }%\) dt f o) do — f f(t) dt J‘ g(u—1) du

\\ = j du f fitygu—o dt,

whmh \B eqmva.lent to the result stated.

Taw of errors the resultant of two laws of this form is also of the same
form,

THEOREM 164. Let f(x) > 0, let f(x) and 2%f(x) belong to L{—c0,0),
and let £ ’
)3 [ o

Jor every x, where a, b, ¢, are given positive numbers.

(T f(x) gives a law of errors, so does = f(f). We now ask for what
N @ \&
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 Then the conditions are consistent only {f ¢t = a-1-b%; and in that
case ' :

l D
f(x) ,J{z k) ik
almost everywhere, where k is a constant.
The integral w
[ @) dv = K,

—

exists for m = 0, 1, 2. Now, for m — 0,1,2,

[ oyeed [« [

ol <}

—u | Y f Gy (b)du,
and, in the three cases m = 0, 1, 2 this gives
K, = K}, ‘,;\\ (11.26.2)
oKy = ak, Ky +bEyRSS (11.26.3)
oK, = a*K, Kyt 2ab£{"3+b K, K, (11.26.4)
Assuming that f(x) is not nully 111 26.2) gives K, = 1. Hence
- (11.26.3) gives (ﬁ-l—b""ﬂ)xl =0 {11.26.5)
and (11.26.4) gives (cg__a.\ BYK, = 2abK3. (11.26.6)
But by Schwarz’s 111qu83115}7
O Ei< KK =K
so that (11266igw’38 o2t b? < 2ab,
:"\;' ' ¢ < a+b
Hence (JI 26.5) gives K, == 0, and (11.26.6) gives
~O° e a”+b"
% ;= E =6
Then, putting « = £, ¥ = o (11.26.1) becomes
1 [ o\ sfE=1 11.26.7)
o= [ )
N (11.26.8)

where =1
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Let D(x) = J2m)F(z) = ff(t)e"“‘*‘ dt,

Then, by Theorem 41, (11.26.7) gives
®(z) = D) D(B2). (11.26.9)

Using (11.26.9) for each term on the right, we obtain

Bz} = O(or) Q(Box) O(afr) P (B%),
and so generally

Dlz) = “D(?’m 1) q)('}’m,z z).. q)(?’m, x), _
where m = 2%, and the m numbers y,, \,..., ¥m 870 the 2"'}erms
obtained by expanding (LB, "o \

Hence ?ml+')"m 2t “}'}'m. (ae‘i“Ban = 1’»‘- -

Also y,,, is of the form o789, where p+q = %; and hence, supposing

a = B, we have Ymp S o (= 1,2, ’m)

Hence ma.x;rmp-a-o as m — oo. Y,
Now sinoe J(=), of(x), and 22f(z) belavﬁ to L, O(x), ®'(x), and &' (z}

are continuous; and
O(0) = fﬂ{(t}'dﬂ = K, =1,

o (0)_‘ J it dt = 1K, = 0,

—

and E (0) f £2f(5) dt = —k,

say. Henca\m the neighbourhood of = 0,
:"\" log @ (x) = w(x)+iv{z),
where%(:e:) and v{x) are continuous, and
. #(0) = 2(0} = w'(0) = v(0) = 0,
\ah'a _ w'(0) = —k  2"(0)=0.
Hence _ . '
log O(z) = Z Jl i, 0)H0ly, 2}

= ot Z Y p{u (8m uw¥m, ,u.x)“i"w (am,p?’m 1 )}

where 0<8mp<1 0<9;?w<1 As m <0, each ypu 0 and
hence so does each 4, .y, ,, and uniformly with I‘eﬁ"Pact to ¢
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Hence . m,
log®(z) = %xs"glyg%p{-ak-}-o (1)}
= ~—ka®+o(),

ie, log®(x) = —tka?,  O(z) = e
and 50 (by Theorem 27) almost everywhere

fla) = 1 f e-thet—iat gy . __}__e-wm

27 \/ k) ’
. Q!

ie. the Jaw is Gauss’s law, \

11.27. A problem in statistical dynamics. + Conmder an
assemblage of atoms moving in one dimengion in such 8 wg,y that the

. fraction of them with velocities between v and v—}\a'v is f fiz) dz
w-Gip

At a subsequent instant let a fraction f 9{(19, %) diz of those with

velocity » have acquired increments of velebity hetween w and w&w,
Then, by an argument similar to that teed in the previous section,
the fraction of the whole which ﬁ.ru&h with velocities between ¢' and

o 4y TN
v +8v' is f g(z) dz; where ‘:
g(v ":q j fw)d(v, 2’ —v) dv. (13.27.1)

\
For a steady st&te g a\ f so that f satisfies the integral equation
f(v’} = f fl)d(v, v’ —~v) do. (11.27.2)
'\

Supposénow that the motion is defined as follows. The centre of
mass _of ‘atoms moving with velocity v moves according to the

equaﬁ}on .
@) W a>0,

dt
so that after time ¢ ifs velocity is ve ¥, Supeumposed on this motlon,
the atoms are given increments of velocity = in time 7, the proportion
of those with inerement between % and u--8u being ¢(u) Su; and this
increment is uncorrelated with v, so that the proportion of those

+ E. A. Milne (2); Fowler, Siatistical Meckanics, §19.5. Milne's original method
requires heavier restrictions than those ssswmed here.
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with velocity » having the additional increment between # and
w--Su is also P{udu. It follows that o

b(o, v N—v-Fu) = lu),
where (x) is independent of v, but of course depends on £. Putting
o = ve~Mty, this is
' S, v —1v) = (v —ve ™).
The condition for a steady state is therefore

fy= [ flope'—ve ) dv,

where, as in the last section,

N

‘ 2 ~&\D
J.f(:c) dz =1, I¢(x) dr = 1. " O

P !

Let F and ¥ be the transforms of f and ¢. The{ :\

' 0
F(£)=W;i_£ ¢E dy *Ju; L) d

— JRRP T ). |

Wenow show thaba certain agsumption about the limiting behaviour
of () as t - Pactually determines all the functions completely. We
assume thaﬁg @Bitive and negative increments % are equally likely, 50
that (,b(eg%::s {—u); and also that, as ¢ — 0, for any fixed positive 3,

N 3

R\ j z%f(x) dx ~ of, j.“ Hlx) dz = o(t),
& ] 3 :
: xﬁere @ is a constant. It follows that, as {0, for a fixed &,
JemFE)—1 = f P(x)(edr—1) de = 2 J' Hlx)(cos fx—1) dx
. _ o . s

= £ fx‘-"-s,b(x) dz + f!!l(x)O(x‘) dex +0(3[ P(x) d“f)
o0

]

= —gat+o (H)}+0@E%)+o(t),
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“and by choosing first 3 and then ¢ sufficiently small it follows that
VR~ ~ ~Fat.

Hence _
F@)—Fige™) _ Py PE-1} | atFg)
& 59-5.! - £~ ge_,h - 3 .
as t->0; ie. F(E) = —afA 2 F(g).
© Hence F(g) = Ce-tagh,

and € = F(0) = (2#}Y. Hence

f(x) = 517.1._ J p—iaff—ite dt = ("2_% )%‘ g—&ﬁx‘fa,

| - &
ie. the distribution is ‘Maxwellian’. : ' \"}
Hence also _
L N I @,]‘
Wy = . - DA i
O = Jom e = Yan T AI
and hence : \
" ;
#le) = {'2;;;(1"_—6—2”)} { zaﬁfﬁ“)
.ga
RN
o)
¢ & .
&
\ i\»:)\s.t
d
AV
N

4362 B b
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